

Al-based approaches to data integration for Solar Orbiter instruments

michele piana

MIDA, dipartimento di matematica, università di genova OATo, istituto nazionale di astrofisica, torino

> 9th metis workshop, january 24-26 2024 museo diocesano di catania, catania, italy

credits

credits: people

solar physics and space weather people @MIDA:

- anna maria massone
- sabrina guastavino
- federico benvenuto
- emma perracchione (@POLITO)
- francesco marchetti (@UNIPD)
- paolo massa (@FHNW)
- andrea tacchino
- mattia rossi
- katia bahamazava (@POLITO)
- gianluca audone (@POLITO)
- edoardo legnaro
- anna volpara
- barbara palumbo
- fabiana cammattari
- margherita lampani
- miriana catalano

external collaborator:

- daniele telloni (@OATo)
- sam krucker (@FHNW)
- andrea battaglia (@FHNW)
- a gordon emslie (@WKU)
- gordon hurford (@berkeley)
- dario del moro (@tor vergata)

credits: money

ARCAFF PI: a m massone

Fondazione Compagnia di San Paolo

Alxtreme Pl: a m massone

SWESNET subcontract

CORNERSTONE PI: f benvenuto

solar orbiter contract

some tentative science

a tentative and personal list of open issues

solar flares:

- to what (quantitative) extent is it possible to predict whether an AR will produce a flare, and when, and of which class?
- which are the most effective precursors of a solar flare hidden in magnetograms and EUV images?
- which is the (quantitative) effectiveness of the acceleration mechanisms in a solar flare?

CMEs:

- is it possible to automatically detect and track a CME in a coronographic image?
- once a CME occures, how can one accurately and computationally determine its travel time from the sun to L1?
- how is it possible to compute the CME vital parameters in a detailed way using computation?

flares and CMEs:

- how can one distinguish in advance between a CME-triggering flare and a flare with no associated CME?
- are there physically explainable correlations between the parameters of CME-triggering flares and of the corresponding CMEs?

a tentative and personal general approach

ingredient 1: STIX data

- imaging approach: fourier
- spatial resolution: down to 7 arcsec
- temporal resolution: 1 sec
- spectral resolution: around 3 keV
- energy range: 4-50 keV
- database: 6000 events with at least 1000 counts at low energy

ingredient 2: metis data

(see this workshop)

ingredient 3: artificial intelligence:

- inverse problems approaches for image reconstruction from STIX data
- convolutional neural networks to detect and track CMEs in metis images
- physics-based neural networks to compute CMEs vital parameters
- featured-based machine learning to identify correlations between
 STIX and metis data

preliminary results: metis

see this workshop

preliminary results: image reconstruction for STIX

THE ASTROPHYSICAL JOURNAL, 894:46 (11pp), 2020 May 1 © 2020. The American Astronomical Society. All rights reserved.

MEM GE: A New Maximum Entropy Me X-Ray V

Paolo Massa¹, Richard Schwartz², A Kim Tolbert², Anna M Federico Be ¹ Dipartimento di Matematica, Università di Genova, via Dodecaneso 35 benvenuto@dima.unige. ²NASA Goddard Space Flight Center, Greenbelt (MD), USA; richard.a. ³ CNR—SPIN Genova, via Dode Received 2020 February 18; revised 2020 March 1 A&A 668, A145 (2022) https://doi.org/10.1051/0004-6361/202243907 © The Authors 2022

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 268:68 (10pp), 2023 October © 2023. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Unbiased CLEAN for STIX in Solar Orbiter

Emma Perracchione¹, Fabiana Camattari^{1,2}, Anna Volpara³, Paolo Massa⁴, Anna Maria Massone³, and Michele Piana^{3,5} ¹ Dipartimento di Scienze Matematiche "Giuseppe Luigi Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, I-10129, Torino, Italy emma.perracchione@polito.it

² Dipartimento di Matematica "Giuseppe Peano", Università di Torino, Via Carlo Aberto 10, I-10123, Torino, Italy MIDA, Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, I-16145 Genova, Italy ⁴ Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA ⁵ Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Torino, Pino Torinese, Italy Received 2023 August 1; revised 2023 August 30; accepted 2023 September 2; published 2023 October 12

MEM_GE VIS_FWDFIT_PS0 -320 600 -340 55' (oucsec) -36 9 -380 ≻ 500 -400 450 -420

Forward fitting

Anna Volpara¹, Paolo Massa², Emma Perracchione

Federico Benvenuto¹, Säm Krucker^{5,7}, Mid

-2350 -2300 -2250 -2200 -2150 X (arcsec)

400

-920 -900 -880 -860 -840 -960 -940 X (arcsec)

-74 -78 -800 -820 -840 -1640 -1620 -1600 -1580 -1560 -1540

u_CLEAN

X (arcsec)

constrained maximum entropy

particle swarm optimization automated CLEAN

https://doi.org/10.3847/1538-4365/acf669

preliminary results: flare forecasting

Frontiers | Frontiers in Astronomy and Space Sciences

TYPE Methods PUBLISHED 07 March 2023 DOI 10.3389/fspas.2022.1039805

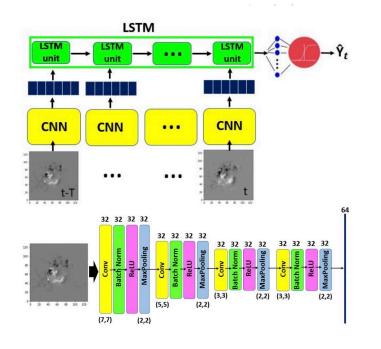
THE ASTROPHYSICAL JOURNAL LETTERS, 904:L7 (7pp), 2020 November 20 © 2020. The American Astronomical Society. All rights reserved.

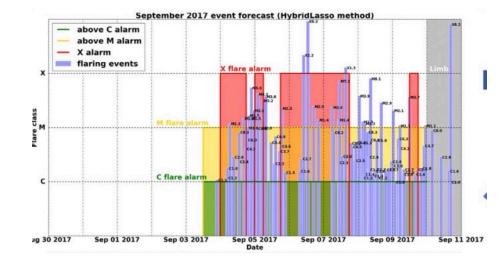
https://doi.org/10.3847/2041-8213/abc5b7

Machine Learning as a Flaring Storm Warning Machine: Was a Warning Machine for the 2017 September Solar Flaring Storm Possible?

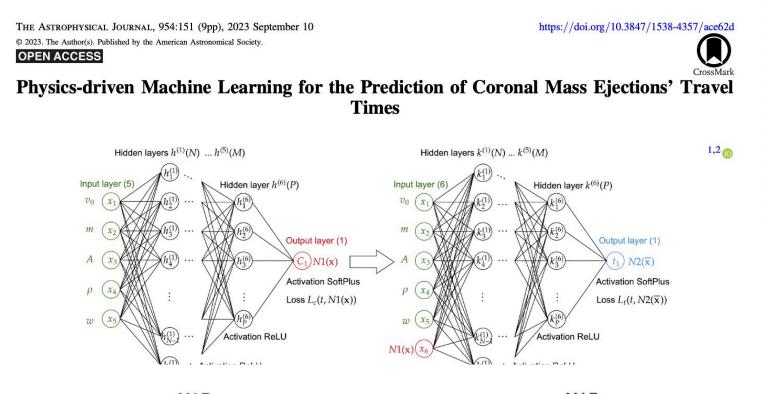
F. Benvenuto¹, C. Campi¹, A. M. Massone², and M. Piana² ¹ Dipartimento di Matematica, Università di Genova, Genova, Italy; benvenuto@dima.unige.it, campi@dima.unige.it ² Dipartimento di Matematica, Università di Genova and CNR—SPIN, Genova, Italy; massone@dima.unige.it, piana@dima.unige.it *Received 2020 July 5; revised 2020 October 28; accepted 2020 October 29; published 2020 November 19* Check for updates

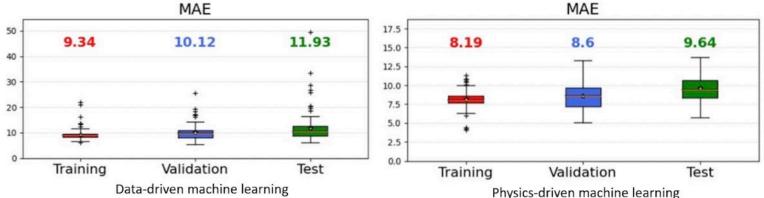
OPEN ACCESS


EDITED BY Enrico Camporeale, University of Colorado Boulder, United States

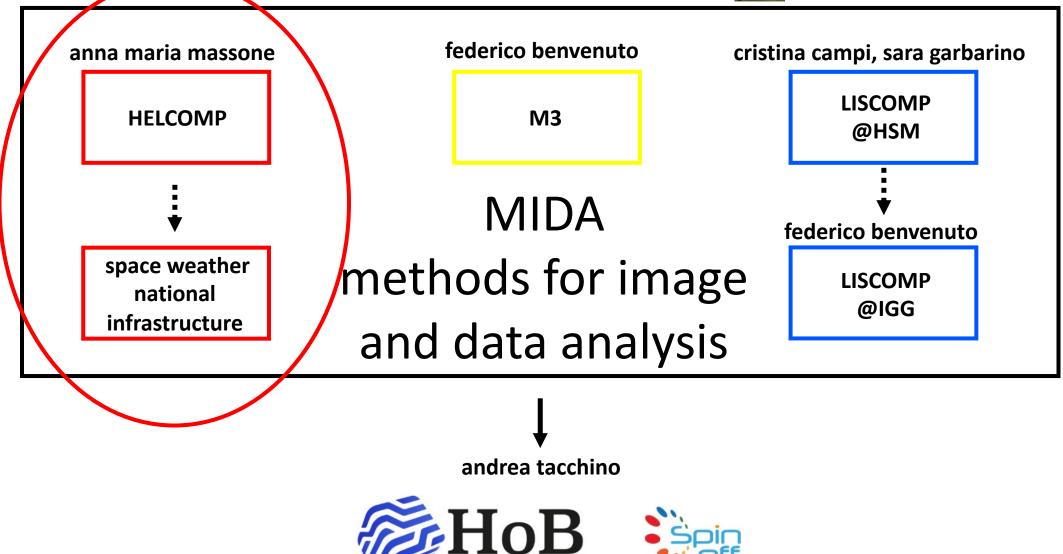

REVIEWED BY Alexey A. Kuznetsov, Institute of Solar-Terrestrial Physics (RAS), Russia P. Vemareddy, Indian Institute of Astrophysics, India

Operational solar flare forecasting *via* video-based deep learning


Sabrina Guastavino^{1*}, Francesco Marchetti², Federico Benvenuto¹, Cristina Campi¹ and Michele Piana^{1,3}


¹MIDA, Dipartimento di Matematica, Università di Genova, Genova, Italy, ²Dipartimento di Matematica "Tullio Levi Civita", Università di Padova, Padova, Italy, ³INAF–Osservatorio Astrofisico di Torino, Torino, Italy

preliminary results: travel time prediction for CMEs



comments

- still some issues concerning the calibration of the small STIX grids (work in progress at MIDA)
- model selection for acceleration mechanisms in solar flares
- few data from solar orbiter: transfer learning
- training phase in classification: score-oriented loss functions
- training phase in regression: design of physics-based loss functions
- value-weighted skill scores for performance assessment of AI approaches

MIDA in a nutshell mida.unige.it

