

# Metis status

### Marco Romoli & the Metis Team

### January 25<sup>th</sup>, 2024

Dept. of Physics and Astronomy, University of Florence, Italy

9<sup>th</sup> Metis Workshop, Catania, January 24-26, 2024





# Metis: the Solar Orbiter coronagraph

### metis

Metis is an externally-occulted coronagraph designed to provide full imaging of the extended corona in:

- total and polarised visible-light brightness (580-640 nm)
- **UV HI Lyman-***α* **line** (121.6 ± 10 nm)

e<sup>-</sup> K-corona B, pB Thomson scattering
e<sup>-</sup> K-corona B, pB



 $(1.6^{\circ} \cdot 2.9^{\circ} \text{ annular, } 1.7 - 3.0 \text{ R}_{\odot} \text{ (0.28 AU)}$ 



### Metis performance: Spatial and temporal resolution

Spatial resolution: checked in-flight with Star observations



#### • Temporal resolution:

UV: > 1s limited by countrate VL: 60s in pB, 20s in tB, >1s in fixed polarization

### Metis performance: Radiometric calibration





★ limiting factors: not all the VL stars are visible in the UV channel, stellar variability, technical issue (corrupted frames, loss of data), not optimized observations, etc.

#### ietis

- 1. Theta Ophiuchi (3t), 5-14 July 2022, STP 211
- 2. Sigma Sagittarii (2t), 4-10 August 2022, STP 215
- 3. HD 210424 (Eps Aqr), 15-18 September 2022, STP 222 (only 5 frames!)
- 4. Alpha Vir, 9-11 November 2022, STP 230, (only 4 frames!)
- 5. Pi Scorpii, 10-15 December 2022, STP 234-235
- 6. Delta Scorpii (2t), 10-15 December 2022, STP 234-235
- 7. Tau Scorpii, 20-25 December 2022, STP 236
- 8. Alpha Leo (2t), 20-21 April 2023, STP 254
- 9. Rho Leo (2t), 20-21 April 2023, STP 254
- 10. Pi Scorpii, 7-12 June 2023, STP 261
- 11. Delta Scorpii, 7-12 June 2023, STP 261
- 12. Theta Ophiuchi, 1-6 July 2023, STP 264

All the ToO available from 2022 up to now (Metis data status)



#### **Cruise Phase**

VL and UV radiometric calibration performed on ground is checked periodically using bright UV stars, with dedicated observations.

#### NMP

Courtesy of Y. De Leo



De Leo et al., A&A 676, A45 (2023)



### Metis performance: Radiometric calibration

UV channel: Cruise phase

 $VF_{flight} = VF \cdot (M_{UV2VL}(FoV)/z)$ 

Radiometric calibration factor  $\varepsilon_{UV}$ 



De Leo et al., A&A in preparation



### Metis performance: Radiometric calibration

#### UV channel: NMP (in progress)



This calibration has been implemented in the UV NMP data

### **UVD** Anomaly

The UV detector displays a variable radiometric behaviour with periodic fluctuations in intensity

The work to understand a eventually correct the issue is in progress.







Synoptic program

High-latitude **Observations** 

Nominal mission started on 27 Nov 2021 after Earth GAM

Venus GAM 18 Feb 2025 to heliolatitude ±17°

**High-latitude Observations** 

Perihelion **Observations** 

RSWs to be repositioned 6-12 months ahead

**Solar Orbiter Mission** M1 of Cosmic Vision 2015-2025

Launch date: 10 February 2020 Commissioning + Cruise Phase: ~1.9 years Nominal Mission Phase (NMP): 5 years to end 2026 Extended mission (EMP): 3 years to end 2029

#### Orbit:

- 0.28-0.32 au (perihelion)
  - 0.74-0.91 au (aphelion)

#### **Out-of-ecliptic view:**

Multiple gravity assists with Venus to increase inclination out of the ecliptic to  $\sim$ 24° (NMP), 30°-34° (EMP)

#### **Reduced relative rotation:**

Continuous observation of evolving structures on the solar surface and heliosphere for almost a complete solar rotation



## Metis observation

Solar Orbiter is on the ecliptic plane until February 2025.

**Observations strongly limited by telemetry** 

Metis observations performed:

- during Remote Sensing Windows (RSWs) within the framework of the Solar Orbiter Observing Plans (SOOPs) with payload shared objectives (30 days/orbit)
- along the rest of orbit as **synoptics**
- During Target of Opportunities (UV star observations and joint observations with other assets)

# Metis activity in the Cruise Phase and the first orbit of the Nominal Mission Phase (NMP)

Metis observations are listed in the Metis webpage: <a href="http://metis.oato.inaf.it/obs\_summary\_new.html#">http://metis.oato.inaf.it/obs\_summary\_new.html#</a>

|      |   | RSWs   | C         | ruise Phase  | Obs. | Synoptic | Synoptics Synoptics/Only VL (typically @ >0.6au) |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|------|---|--------|-----------|--------------|------|----------|--------------------------------------------------|----------------|----------------|-------------------------|------|-----|--|--|--|--|--|--|--|--|--|
|      |   | Launch |           | Cruise Phase |      |          |                                                  |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|      |   |        | (         | Commission   | ing  | RSCW1    |                                                  |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
| 2020 |   |        |           |              |      |          |                                                  |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|      | J | F      | М         | Α            | М    | J        | J                                                | Α              | S              | 0                       | Ν    | D   |  |  |  |  |  |  |  |  |  |
|      |   |        |           |              |      |          |                                                  |                |                |                         |      | NMP |  |  |  |  |  |  |  |  |  |
|      |   | RSCW2  | RSCW3     |              |      |          |                                                  |                | RSCW4          |                         |      |     |  |  |  |  |  |  |  |  |  |
| 2021 |   |        |           |              |      |          |                                                  |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|      | J | F      | М         | Α            | М    | J        | J                                                | A              | S              | 0                       | Ν    | D   |  |  |  |  |  |  |  |  |  |
|      |   |        | 1st perih | elion        |      |          |                                                  |                | 2nc            | d perihelion            | )    |     |  |  |  |  |  |  |  |  |  |
|      |   | R      | SW1_RSW2  | 2-3          |      |          |                                                  |                |                | RSW4                    | -5-6 |     |  |  |  |  |  |  |  |  |  |
| 2022 |   |        |           |              |      |          |                                                  |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|      | J | F      | Μ         | A            | Μ    | J        | J                                                | Α              | S              | 0                       | Ν    | D   |  |  |  |  |  |  |  |  |  |
|      |   |        | 3rd       | perihelion   |      |          |                                                  |                | 4th perihelion |                         |      |     |  |  |  |  |  |  |  |  |  |
|      |   |        | RSW       | /7 RSW8-9    |      |          |                                                  |                | R              | S <mark>W10-11-1</mark> | 2    |     |  |  |  |  |  |  |  |  |  |
| 2023 |   |        |           |              |      |          |                                                  |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|      | J | F      | Μ         | Α            | М    | J        | J                                                | Α              | S              | 0                       | N    | D   |  |  |  |  |  |  |  |  |  |
|      |   |        | 5th pe    | erihelion    |      |          |                                                  | 6th perihelion |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|      |   |        | RSW13     | -14-15       |      |          |                                                  |                | RS             | W16-17-1 <u>8</u>       |      |     |  |  |  |  |  |  |  |  |  |
| 2024 |   |        |           |              |      |          |                                                  |                |                |                         |      |     |  |  |  |  |  |  |  |  |  |
|      | J | F      | Μ         | Α            | Μ    | J        | J                                                | Α              | S              | 0                       | Ν    | D   |  |  |  |  |  |  |  |  |  |

Interruptions in the flow of observations due to: unexpected Metis and/or S/C switch off – S/C off-pointing

### Summary of proposed SOOPs

Below the proposed SOOPS for LTP15 perihelion in the second trimester of 2024 Last year with SOLO on the ecliptic

 L\_BOTH\_HRES\_LCAD\_CH-Boundary-Expansion Cadence 10 min VL pB 2x2, 1 UV 2x2 MAGTOP high resolution, (Coord. R. Susino)

- **R\_FULL\_LRES\_MCAD-Probe-Quadrature C**adence 30s VL tB 2x2, UV 2x2 (Coord. D. Telloni)
- **R\_FULL\_HRES\_HCAD\_Density-Fluctuations** VL FP 1x1 + UV 2x2 high temporal cadence (1-20 s, 2 min, 5 min) (Coord. V. Andretta)
- **L\_FULL\_HRES\_HCAD\_Eruption-Watch** 10 min cadence binning 4x4 VL pB + UV (Coord. C. Sasso)
- COORD\_CALIBRATION Intercomparison with LASCO and STEREO in opposition 15 min cadence binning VL pB 1x1 UV 2x2 (Coord. A. Burtovoi)

#### **R\_SMALL\_HRES\_LCAD\_Composition\_vs\_Height** (SPICE led)

# Synoptics

- Standard synoptic: R\_FULL\_LRES\_LCAD\_RS-Synoptics VL pB + UV Cadence 1h binning VL 2x2 UV 4x4
- **High cadence synoptic: R\_FULL\_LRES\_LCAD\_RS-Synoptics-High** VL pB + UV Cadence 1h binning VL 2x2 UV 4x4
- High cadence synoptic: R\_FULL\_LRES\_LCAD\_RS-Synoptics-Low VL pB + UV Cadence 2-3h
   binning VL 2x2 UV 4x4

(Coord. R. Susino)

SOLAR ORBITER REMOTE-SENSING SYNOPTIC PROGRAMMES

### No UV images when sun distance >0.6au

# Metis operations





Ground segment + Pipelines + data validation





ALTEC Archive and data processing pipeline





### Solar wind

- Metis maps the regions where **the solar wind undergoes acceleration** from  $\sim 100$  km/s to near its • asymptotic value
- **Doppler dimming analysis** (Withbroe+ 1982; Noci+ 1987):
  - outflow speed can be derived from the comparison of coronal UV HI Lα emission (dimmed due to coronal expansion) with L $\alpha$  emission for a static corona (no dimming) expected based on the electron density from pB maps of the coronal plasma (Dolei+ 2018; Dolei+ 2019)



#### 16

# Solar-wind diagnostics with in-situ & coronal data metis

 $t_2$ 

Exploring the solar wind from its source on the corona into the inner heliosphere

Remote sensing and in-situ coordinated measurements, like during **quadratures between Solar Orbiter and PSP**, but not only, provide a valuable tool to probe the physical parameters of the solar wind throughout the solar corona and the heliosphere

Telloni+ 2021 Biondo+ 2022 Telloni+ 2022 Niembro+ 2023 Telloni+ 2023 Telloni+ 2023





17

EUI FSI 17.4 nm (2022-03-26 14:20) [@0.32 A.U.

Metis VLD 580-640 nm | pB (2022-03-26, 14:15-14:35)

# Magnetic-field morphology

### metis

- Metis produces synoptic maps that combined with images of other space and groundbased instruments and magnetic-field extrapolations (WSO + PSI) can provide from the ecliptic and out-of-the ecliptic plane:
  - the overall magnetic configuration
  - tomographic reconstructions of electron density (Vasquez+ 2019,2022)
- The highest spatial resolution achieved during perihelia (~2000 km in the VL) is comparable or better than that of total solar eclipse images
- Highly detailed view of the very dynamical corona





Romoli+ 2021 Antonucci+ 2023





### Solar transients

- Metis observations of CMEs and related phenomena are crucial to
  - identify of the mechanism/s driving the eruptions
  - ascertain whether the main source of the flux injection into the heliosphere resides in the corona
  - study the restructuring of the global solar atmosphere following a CME





2022-10-13 Metis Courtesy of V. Andretta

- The unique combination of VL and UV images allows for the first time the investigation of the thermodynamic evolution of CME plasma
  - UV Lα and VL have different behaviour during the CME transient allowing for the **derivation of the the physical parameters** of the event
- Synergies with EUI/FSI (coronagraphic mode), SoloHI, STEREO, and LASCO

| Frassati+ 2023  | Russano+ 2023  |
|-----------------|----------------|
| Heinzel+ 2023   | Niembro+ 2023  |
| Zimbardo+ 2023  | Mierla+ 2023   |
| Rodriguez+ 2023 | Bemporad+ 2022 |
| Andretta+ 2021  |                |





One example 8/10/2022, before perihelion. Density enhancements in the streamer at north-west: magnetic reconnection events, caused by Alfvén waves?

Metis high cadence observations provide a new window on the dynamics of the solar corona in a range of physical parameters never explored before

# **Density fluctuations**

Metis design permits unprecedented observations at high temporal cadence:

- down to 1 s per frame, in single polarization mode (FP)
- down to 20 s per frame in total brightness mode (tB)
- and down to 1 polarized brightness (pB) image per minute



#### Courtesy V. Andretta



Synergies

This decade will provide for the first time multi-point of view observations of the Sun

- SOHO: Lasco [NRL] (1995)
- STEREO-A: Secchi [NRL] (2008)
- Solar Orbiter: Metis [INAF] and SOLOHI [NRL] (2020)
- ASO-S: Lyman-alpha Solar Telescope (LST) [CAS] (2022)
- Aditya L1: Visible Emission Line Coronagraph (VELC) [IIA] (2023)
- **Proba3**: ASPIICS [ESA] (2024)
- **CODEX** Coronal Diagnostics Experiment [NASA-GSFC] ISS coronagraph (2024)
- **PUNCH**: Polarimeter to Unify the Corona and the Heliosphere [SWRI] (2025)



Solar Orbiter EUI coronagraphic mode FeIX/FeX 17.4nm 'Wavelets Optimized Whitening' algorithm enhances the visual appearance of the movie.

|        |     |        | 1 |  |   | 2 |  |  | 3     | 3 |  |  | 4 |  |  | 5 |  |  |  | 6 |  |  | 7 |  |  | 8 |  |  | 9 | )   |   |  | # | \$      |       |         |
|--------|-----|--------|---|--|---|---|--|--|-------|---|--|--|---|--|--|---|--|--|--|---|--|--|---|--|--|---|--|--|---|-----|---|--|---|---------|-------|---------|
| SOHO   | LA  | ASCO   |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   | -> 112  | deg   |         |
| STEREO | SEC | ECCHI  |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   | -> 88.7 | deg   |         |
| PSP    | W   | VISPR  |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   | 58.5 d  | eg -: | 160 deg |
| SOLO   | Me  | 1eti s |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   |         |       |         |
| SOLO   | SO  | OLOHI  |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   | 1 1 |   |  |   | ->45 d  | eg    |         |
| PROBA3 | AS  | SPIICS |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   |         |       |         |
| ASO-S  | SC  | CI     |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   |         |       |         |
| Aditya | VE  | ELC    |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   |         |       |         |
| PUNCH  |     |        |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     |   |  |   | ->45 d  | eg    |         |
| CODEX  |     |        |   |  |   |   |  |  |       |   |  |  |   |  |  |   |  |  |  |   |  |  | T |  |  |   |  |  |   |     |   |  |   |         |       |         |
|        |     |        | _ |  | _ | _ |  |  | <br>_ |   |  |  |   |  |  |   |  |  |  |   |  |  |   |  |  |   |  |  |   |     | _ |  |   | 1       |       |         |





### Visit Metis website <u>www.metis.oato.inaf.it</u>

### Metis science topics working groups



Synergies with several space missions:

SOHO, STEREO, SDO, PSP, Proba3, ASO-S, Aditya, UVSC, PUNCH, CODEX, Solar C, and Ground based telescopes

#### so\_metis@inaf.it