

The Metis contribution in cometary science: an initial assessment of the first three years of activities

Alain J. Corso¹, Vania Da Deppo¹, Silvio Giordano², Giuseppe Nisticò³, Ivano Bertini⁴, A. Bemporad², Paolo Chioetto¹ and the Metis 'Comets and other Solar System bodies' Topical Team

> ¹CNR-IFN Padova ²INAF- Osservatorio Astrofisico di Torino ³Università della Calabria ⁴Università degli Studi di Napoli Parthenope

- Development of a tool able to foresee comet passages on the Metis FoV
 - Periodical check of new bodies on the IAU Minor Planet Center database for checking transits on the Metis FoV.
- Planning comets observations
 - Modeling of visible light curve based on available ground observations (typically amateur astronomers).
 - Modeling of UV light curved, based on literature or SOHO/SWAN observations.
 - Observation plan (... robust enough in order to avoid the failure if the comet changes the game).

Comet	Observation Outcome
C/2021 A1 (Leonard)	Success
96/P Machholz	Success
322P/SOHO	Missed (no observational window available)
2P/Encke	Partially observed (restricted observational window and low data volume)
321P/SOHO	Partially observed (At the limit of the Metis capabilities)
C/2020 P4-B	Not observed (because of probably out of Metis capability)

CRS

- Data analysis...
 - Participation (in representation of Metis) to the Comet Leonard HIS Group meeting (lead by Tim Stubbs, NASA/GSFC)

U.S.NAVAL

tB Visible observations

Space

From A. BEMPORAD et al., Astronomy & Astrophysics 680 (2023)

Observational context	Typically	Metis
UV Ly-α observations	 Ly-α "full comet" integrated photometry (e.g. SOHO/SWAN) UV spectrometer scanning 	 Direct imaging with plate scale of 40.2 "/px
VIS observations	 Different spectral bands Polarimetry Light curve over time Spectroscopy 	 Polarimetry (tB, pB) One spectral band, narrower than R band Simultaneous with UV Ly-α imaging
Phase angle ϕ observations geometry	 Ground-based: 30° < φ < 150° Space-based coronagraph (e.g. LASCO): 10°< φ < 170° 	• $2^{\circ} < \phi < 178^{\circ}$ (and probably better)

U.S.NAVAL

From FAGGI S. et al., The Planetary Science Journal (2023)

PROCESS 1: WATER PHOTODISSOCIATION

Thales

CRS

The Ly- α resonant scattering of the neutral H coma can be used to:

- estimate of the water outgassing rate.
- infer some properties of the local corona plasma when H atoms interact with solar wind (only for sun-grazing comets).

ThalesAlenia

U.S.NAVAL

UV radiance given by the H coma fitted with a **Haser model**.

- ✓ Stationary model.
- ✓ Coma spherical symmetry.
- ✓ Model with 3 main populations of H atoms speed:
 - 20 km/s coming from the first photodissociation process
 - 8 km/s coming from the second photodissociation process
 - < 4 km/s coming from a thermalization of the high velocity atoms

Thales

CGS

Visible Bandpasses comparison. SOLO/Metis, SOHO/LASCO, and STEREO/SECCHI bandpasses overlaid on a typical comet spectrum expressed in arbitrary units. (adapted from JONES 2018) [Metis 580-640 nm LASCO C2 Orange filter 540-640 nm]

LINE OF SIGHT DUST SATURATION $(Af \rho \propto \rho)$

Agenzia

Spaziale Italiana INAF

ISOPHOTE-BASE DUST COMA MODEL

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

VISIBLE DATASET

ar orbi

Metis observations can be very useful for studying some main properties of comets:

- Water production rate (from UV images).
- Dust coma properties and dust production rate (from tB VIS observations).
- Comet phase function at high phase angles (from tB VIS observations).

Future work:

- Looking for new observation opportunities (i.e. 3200 Phaethon in 2025, Apollo active asteroid).
- Looking for serendipitous comets in Metis data.

Dreams (if God willing...):

- Follow-up of a great long-period comet (LPC) or a weakly hyperbolic comet (WHC) along its perihelium transit.
- Follow-up of a comet disaggregation process.

