The MUSE mission and the modeling of reconnection events

MULTISLIT SOLAR EXPLORER

Fabio Reale, University of Palermo&INAF,

G. Cozzo, P. Pagano, A. Petralia, C. Argiroffi, Denise Perrone, Marco Stangalini, and the MUSE Team

Lockheed Martin Solar & Astrophysics Laboratory (LMSAL), Harvard Smithsonian Astrophysical Observatory (SAO), Goddard Space Flight Center (GSFC), Montana State University (MSU), UC Berkeley Space Sciences Laboratory (UCB), Rosseland Center for Solar Physics, University of Oslo (RoCS)

Science Co-Is: High Altitude Observatory, Naval Research Laboratory, Lawrence Livermore National Laboratory, NASA-MSFC, National Solar Observatory, University of Northumbria, Stockholm University, University of Glasgow, St. Andrews University, Max Planck Institute for Solar System Physics, University of Palermo, INAF, CSIRO

International Partners: Norwegian Space Agency (NOSA), Italian Space Agency (ASI), German Aerospace Center (DLR)

Solar Physics (2006) 234: 41–77 DOI: 10.1007/s11207-006-0055-z

© Spri

ON SOLVING THE CORONAL HEATING PROBLEM

Invited Review

JAMES A. KLIMCHUK

• The importance: signature of impulsive heating

the temperature range from about 0.5 to 10 MK. The high end of the temperature range is especially important for diagnosing impulsive heating, since relatively little can be learned about the energy release (duration, spatial distribution along the field, etc.) once the plasma enters the slow radiative cooling phase (Winebarger and Warren, 2004, 2005; Patsourakos and Klimchuk, 2005a,b). Since the evolution

 \Box Hot loops may require temporarily T ~ 10 MK

Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket

Shin-nosuke Ishikawa 🖂, Lindsay Glesener, Säm Krucker, Steven Christe, Juan Camilo Buitrago-Casas,

Noriyuki Narukage & Juliana Vievering

Nature Astronomy 1, 771–774 (2017) Cite this article

Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the

THE ASTROPHYSICAL JOURNAL, 698:756–765, 2009 June 10 © 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

Are loops impulsively heated?

EVIDENCE OF WIDESPREAD HOT PLASMA IN A NONFLARING CORONAL ACTIVE REGION FROM HINODE/X-RAY TELESCOPE

FABIO REALE^{1,5}, PAOLA TESTA², JAMES A. KLIMCHUK³, AND SUSANNA PARENTI⁴

Pink is hot (6-8 MK) (Reale+ 2011)

Testa & Reale 2012 AR 11289 CaXVI 171A

SOLAR DYNAMICS OBSERVATORY DISCOVERS THIN HIGH TEMPERATURE STRANDS IN CORONAL ACTIVE REGIONS

FABIO REALE^{1,2}, MASSIMILIANO GUARRASI¹, PAOLA TESTA³, EDWARD E. DELUCA³, GIOVANNI PERES^{1,2}, AND LEON GOLUB³

Prediction confirmed by SDO/AIA images in "hot" channels

Overall View of the MUSE Instruments

- Spectrograph (SG)
 - 25 cm aperture, 3 channel design, common grating substrate
 - multiple (35) slit design, 0.4 arcsec resolution
 - Centroiding resolution <5 km/s
- Context Imager (CI)
 - 20 cm aperture, dual bandpass, **0.33 arcsec resolution**
 - Modified SDO-AIA design incorporating lessons learned from IRIS & Hi-C

500 µm					
	a second se				

MUSE instruments leverage IRIS, SDO/AIA, HiC heritage Sun-synchronous orbit (600-700 km) Sustained datarate of 20 Mbit/s (~40x-1000x more than previous spectrographs)

MUSE Captures dynamic coronal properties at key scales

 Reveal processes invisible to imagers

For the first time capture multi-scale physical processes from driving scales at 0.5" to active region size impact, on short time scales (20s)

Distinguish between competing state-of-theart models

Breakthrough in Resolution & Cadence (x40-100)

High-cadence context & broad temperature coverage (580"x580")

Multi-slit spectroscopy Intensity -> Temperature Velocity Non-thermal motions To diagnose reconnection, flows, waves, heating

What is unique about MUSE?

Breakthroughs in:

-cadence: 40-100x faster & larger FOV than current/planned spectrographs – for the first time freezes "coronal evolution" under spectrograph slits

-spatial resolution: 10x higher than AIA, 25x better than EIS or SOLO/SPICE

EUVST

Synergy between MUSE and Solar-C/EUVST: Both are key parts of NGSPM

- Joint JAXA/NASA/ESA report on Next Generation Solar Physics Mission (NGSPM) calls out need for coordinated observations between:
 - JAXA-led Solar-C/EUVST single-slit spectrograph with broad temperature coverage from photosphere to hot flaring corona
 - MUSE-like instrument with high-speed spectral rasters over large FOV and context imaging

Instrument	Resolution	Spectroscopy			Imaging	Datarate
		Temperature	Cadence	FOV		[Mbit/s]
EUVST	0.4"	0.01-15 MK w/ 10-20 lines	12s (AR)	2" x 140"	Photosphere & chromosphere over 300"x300"	0.7
MUSE	0.33-0.4"	0.7 - 11 MK w/ 4 lines	12s (AR)	170"×170"	TR & corona (1.2 MK) over 580″x580″	21.4

MUSE provides coronal imaging/context and captures multi-scale processes involved in coronal heating and flares/eruptions

How can MUSE distinguish between competing physical mechanisms?

The Astrophysical Journal, 00.00000 (Bop), 2021 Month Day 10.002, The astrono Robinshity for American Astronomics Receip. [OPEN ACCESS]

Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating

Bert De Poetien^{1,2,2} ©, :-Paola Testa⁴ ©, Jean Martínez-Sykora^{1,2,3,3} ©, Patrick Antelin⁵ ©, Konstantines Karampelas^{6,7} ©, Viggo Hansteen^{1,2,3,5} ⊕, Matthias Rempel⁵ ⊕, Mark C. M. Cheung¹ ⊕, Fabio Reale^{9,10} ⊕, Sanja Danilovie¹¹, Paolo Pagano^{9,10} ⊕, Vanessa Pelito^{1,5} ⊕, Iacke De Meoriel^{2,12} ⊕, Daniel Nöbregz-Streno^{2,2,3,11} ⊕, Tese Van Doossetleen² ⊕, Aatonino Petralis¹⁰ ⊕, Matheubeh Asgari-Enghi⁴ ⊕, Paul Beemer¹ ⊕, Mars Carlsan^{12,3,2} ⊕, Georgios Chintzegleo^{1,13} ⊕, Advian Dav¹⁵, Ed, DeLaca⁴ ⊕, Leon Golub¹ ⊕, Takuma Matsumore¹⁷, Ignecio Ugarto-Ura¹⁸ ⊕, and Scott Melniosh⁴ ⊕ the MUSE team

¹ Lockland Martin Scher & Astrophysics Laboratory, 3251 Haromer Street, Pule Alte, CA 94504, USA; https://www.com. Rosseland Centre for Solar Physics, University of Colo, P.O. Bas 1025 Mindem, N.0315 Oala, Norway, Institute of Theoretical Astrophysics, University of Oda, P.O. Box 1029 Blindern, N-0315 Cole, Norway ⁶Rarvard-Secilitsenian Center for Astrophysics, 50 Cauler Street, Cambridge, MA 02193, USA ³ Bay Artz Environmental Research Institute, NASA Research Jack, Molflett Field, CA 94005, USA. ⁵ Department of Mathematics, Physical: Exclusive Laginousing, Northanibria University, Newcastle Upon Tyne, NEI 877, UK. ⁷ Centre for mathematical Plasma Astrophysics (CmPA). KU Leasen. Celestjoenham 200B Bas 2401, B-30¹/, Leaven, Belgian. High Altitude Observatory, MCAR, P.O. Box 2001, Boulder, CO 80207, USA ⁹Dipartimento di Esica e Chimica, Università di Palermo, Finaza del Parlamento 1, 1-50134 Palermo, Italy Onservatorio Astronomico di Palerne, Piazza del Parlamento 1, 8-30134 Palerne, Italy ¹¹ Institute for Solar Physics, Department of Assessmery, Stackheim University, AltaNova University Centre, SII-107, 51 Stackheim, Sandan School of Mathematics and Statistics. University of St. Andrews. 53. Andrews. File KY16 958. UK instituto de Astrollision de Cananas, E-38206 La Laguna, Tenenfe, Spain ¹¹ Universidad de La Laguna, Dept. Astrofísica, E 3208 La Laguna, Teorrife, Spain ³⁰ University Corporation for Atmospheric Research, Boulder, CO 80807-3000, USA. OSA, Goddard Space Flight Carlor, Grombell, MD 20771, USA ¹⁰ National Astronomical Observatory of Japan, 2 28-8 Ocever, Mitake, Teleyo 151 \$588, Japan ¹⁸Songe Science Diseason, Nasel Research Laboratory, Washington, DU 21375, USA. Received 2021 August 20: revised 2021 October 22: scoreted 2021 October 25: published 2022 MM DD

Abstract

The Multi-stit Solar Explorer (MUSE) is a proposed mission composed of a pullisht EUV spectrograph (in these spectral bands around 171 Å, 284 Å, and 108 Å) and an extreme ultraviolat (BUV) context imager (in two pasibands around 195 Å and 304 Å). MUSE will provide imprecision depectral and imaging diagnostics of the solar covers at high spatial (COP3) and 304 Å). MUSE will provide imprecision depectral and imaging diagnostics of the solar covers at high spatial design. By obtaining spectra in four bright EUV lines (Feux 171 Å, Feuxy 284 Å, Feuxy-Feuxy 108 Å) covering a wide range of TR and coveral temperatures along 37 slits simultaneously, MUSE will, for the first time, "freeze" (at a cadence as short as 10.9) with a spectroscopic nuster the evolution of the dynamic coveral plasma over a wide range of solates: from the spatial scales on which energy is acleased (COP5) to the large cade ($<170^{\circ} \times 170^{\circ}$) armophatic response. We use numerical modeling a showcase bew (MUSE) will constrain the properties of the tobar atmospheric response. We use numerical modeling a showcase bew (MUSE) will constrain the properties of the tobar atmospheric response. We use numerical modeling a showcase bew (MUSE) make distinguishing and coveral mass ejections (CMEs) make distinguishing and coveral mass (jections (CMEs) make distinguishing and coveral mass (jections (CMEs) make distinguishing and coveral mass (jections (CMEs) make distinguishing and coveral coveral beaming, fines, and coveral mass ejections (CMEs) make distinguishing and coveral to distinguishing and coveral mass (jections (CMEs) make distinguishing and coveral response. (DKEST and others), and the single-skit high-resolution Solar-C EUVST spectrograph, and ground-toxed observatories (DKEST and others), and the single response involved in this test paper, we focue on coronal heating mechanisms. An accompanying paper focuese on face and CMEs.

Unified Astronomy Theraterus concepts: Solar coronal hosting (1989); Theoretical models (2107); Solar instruments (1499);

Supporting meterial: azimations

Table 3. Predicted MUSE diagnostics for various models of heating mechanisms

Mechanism	Predicted Diagnostic	λ [Å]	Figures
Spicules	- type I and type II spicules	304	2,3
	- short-lived blue-shifted brightenings at loop footpoints associated w/	171	2,3
	spicules		
	- propagation of Alfvénic waves (Doppler and POS motions), triggered by	304, 171, 195, 284	13a, 16-18
	spicules, along loops		
	 dissipation of Alfvénic waves through impulsively-driven KHI 	171, 284	13, 15-18
	 formation of one and loop, associated with spicules 	171, 195, 284	2,3
	- comporative flows at loop footpoints, associated with spicules	284	2, 3
Braiding	- visibly braided loops	All	7
	– spatic-temporal coherence of intensity and line width along loops (20-60s, $\sim 5{-}30^{\circ})$	171, 284, 106	4, 5, 10
	- short-fixed (\approx 20s single, \approx 60s cluster) nanojets: high velocities ($<\sim$ 100 km s^{-1}) and line widths, transverse to guide field	171, 284, 108	4,8,9
	- loop formation associated with nanojets	171, 195, 284, 105	8
	- twisting and unwinding motions	171, 195, 284	7
	- evaporative flows in loops	171, 284, 108	6, 10, 11
	- nanoflare driven short-lived brightenings at loop footpoints, and associ-	171, 284, 108	10, 11
	ated short-lived hot loop emission		
Wavee	- propagating or standing oscillatory displacements of loops and jets	304, 171, 195, 284	16-19
	 - oscillations in velocity, line width along loops 	171, 284	12.14.16.19
	 spatial dependence of FFT power spectrum along loop 	171, 284	13
	- propagation of Doppler shift oscillations along loops	171, 284	14, 15-18
	- spatio-temporal coherence of velocities and line width along loops from	171, 284	12, 14, 16-
	wave propagation		18
	- specific phase relationships between intensity, velocity, line width	171, 281	10-19
	 concentration of wave power at edge of flux tubes (KHI, RA) 	171, 195, 284	16-18
	 steady downflows/upflows around edge of flux tubes (KHI, RA) 	171, 195, 284	16-18
Flux Emerg.	 - short-lived, low-lying loops, possible EUV absorption from overlying cool plasma 	304, 171, 195, 284	50
	 fow patterns associated with draining of rising loops and topological evolution including footpoint separation 	171, 284, 195	20, 21
	- strong short-lived brightenings and bi-directional flows (> 100 km s ⁻¹), large line widths (from large-angle reconnection)	171, 284, 108	20, 21
	- spatio-temporal coherence of highly dynamic "storms" of sudden brightenings and line width increase $(10{\text -}30^\circ, 20s)$	304, 171, 195, 284, 108	20, 21
	- various types of jets, including crupting (mini-)filaments	304, 171, 195, 284	20, 21

12

MADE Institution Teams and Roles similar to IRIS SMEX

MUSE Management Structure

	Dr. Bart De Pontieu, Pl Lockheed Martin ATC Solar & Astrophysics Lab Management Spectrograph (SG) Science Operations Context Imager Science Guide Telescope Data Center Flight Software Electronics Inst & Obs I&T				
Smithsonian Astrophysics Obs Context Imager, SG, Science			Montana State University Student Collaboration, Spectrograph Support, Science		
l Dat	UC Berkeley SSL Mission Operations, a Processing, Science		LM Space Spacecraft		
Ор	NASA GSFC tical GSE, SG design, Science Analysis		Co-Investigators MHD modeling, Science		

- MUSE team structure similar to IRIS SMEX team
 - ATC leads development and science operations and analysis
 - Including long-term collaborators:
 - Harvard Smithsonian Astrophysics Observatory (SAO),
 - NASA GSFC,
 - Montana State University,
 - UC Berkeley (Mission Ops),
 - and many science institutes
 - **Contributions by:**

-

- Norwegian Space Agency (NOSA) for downlinks, data center and science
- Italian Space Agency (ASI) for mirrors, thin film filters, coating tests, and science
- German Aerospace Center (DLR) for grating, calibration, and science

VINSE Science Co-I Team

Co-I	Inst.	Responsibilities (expertise)	Co-I	Inst.	Responsibilities (expertise)
De Pontieu, B.	LMSAL	PI; IRIS Coordination (PI IRIS)			
Boerner, P.	LMSAL	Deputy PI; Project Scientist	Jaeggli, S.	NSO	DKIST coordination, SG calib., analysis DKIST/MUSE obs.
Hansteen, V.	LMSAL	Models flux emergence, braiding; obs. programs braiding; obs. analysis tools; public release of models, Hinode coordination	Bale, S.	UCB	Institutional PI at UCB; PSP coordination, analysis PSP/MUSE
Jin, M.	LMSAL	Models of flux rope driven CMEs, global corona; obs. programs for CMEs; comparison of CME models and observations; AIA coordination (PI AIA)	Carlsson, M.	UiO	Models of flares, coupling to low atmosphere (He II synthesis); UiO data center, liaison with NSA; SoLO coord. (SPICE co-PI)
Martinez Sykora	LMSAL	Deputy Science Lead; Models of spicules and impact on corona; observational programs for spicules, numerical modeling tools	Leenaarts, J.	ISP	SST coordination (SST dir.); models of low atmosphere incl. non-equilibrium ionization and non-LTE radiative transfer
Polito, V.	LMSAL	Models of nanoflares incl. non-thermal particles and Alfven waves; comparison with observations; analysis of flare obs.			
Chintzoglou, G. LMSA		Work on numerical simulations on flaring-productive active regions and closely with the Project Scientist/Deputy PI Dr. Paul Boerner	De la Cruz Rodriguez, J.	ISP	Perform inversions of the photospheric and magnetic field using DKIST coordinated datasets
	LMSAL		De Moortel., I.	St.And.	Models of wave propagation/heating; obs. progs. waves
Cheung, M.	CSIRO	Science Lead; Space weather applications (incl. MURAM and data-driven models); AI techniques	Antolin, P.	NUni	Models resonant absorption, plasma instabilities; wave analysis
Golub, L.	SAO	Institutional PI at SAO; SAO Project Scientist; CI design, I&T	Fletcher, L.	UGI	Obs. Programs for flares; comparison flare models & MUSE obs
Samra, J.	SAO	Dep. Instrument Scientist; SAO CI Inst. Scientist, lead CI calib.	Peter, H.	MPS	Data-driven models of corona; comparison w/ MUSE obs
Testa, P.	SAO	Obs. programs for nanoflares; validation of multi-slit disambiguation; analysis of TR & coronal observations	Solanki, S.	MPS	Coordination with GREGOR and SoLO/PHI (PHI PI)
Reeves, K	SAO	Studies that connect MUSE observations with heliospheric data from various missions including PSP, Solar Orbiter, and PUNCH.	Ugarte-Urra I	NRI	Coordination with EUVST, development of NGSPM observing programs, analysis of coordinated EUVST/MUSE datasets
Daw, A.	GSFC	Institutional PI at GSFC; optical GS E lead for SG & CI; atomic physics sensitivity analysis; analysis of EUV spectra	Soufli, R.	LLNL	Response for EUV coatings of the grating and the SG and CI mirrors
Kankelborg, C.	MSU	Lead of student collaboration; assist instrument design, contribute to science ops; obs. programs for coronal holes	Reale, F.	UoP	Perform MHD modeling of coronal heating via braiding.
Winebarger, A.	MSFC	Validation of multi-slit disambiguation methods; obs. programs for quiet Sun; analysis of coronal spectroscopy and imaging			
Rempel, M.	HAO	Models of flares and CMEs driven by flux emergence	Spadaro, D.	UoC	Analysis of spectral data, and coordination with Solar Orbiter.

Italian contribution: ASI/INAF Agreement D. Perrone, ASI

- Hardware:
 - EUV Filters (M. Barbera, UniPa, INAF/OAPa)
 - Mirrors (D. Spiga, INAF/OA Brera)
 - Test coating (M. Pelizzo, CNR/IFN)
- Scientific support:
 - UniPa (F. Reale)
 - INAF/OACt (D. Spadaro)
 - INAF/OACN (V. Andretta)
 - UniCal (F. Malara)

Loop kink instability and MHD avalanches (Cozzo, Hood, et al. 2023)

- Localised instability leading to a large heating event (Tam et al 2015, Hood et al 2016, Reid et al 2018, 2020);
- Stratified atmosphere (chromosphere + TR + corona), magnetic field tapering, thermal conduction, radiative cooling, anomalous diffusivity, gravity in curved loop;
- Kink Instability can trigger an MHD avalanche.

coronal loops

time = 0 s

284 Å Fe XV

 T_0 : Emission (DN s⁻¹ pix⁻¹)

Ū.

 h_1 : Doppler Shifts fkm s⁻¹1.

2 5 6 7 6 9 10 11 12

п

0

0

0

x [10⁹ cm]

1.2

E P 10 II II

2

2

2

2

2

- 5

0 P 10 H 12

Coronal energy release by MHD avalanches - II. EUV diagnostics of a multi-threaded coronal loop Cozzo et al. 2024, in preparation

MUSE lines

- Front view

-2

-2

-2

-2

-2

T 0.6

0.4

0.2

0.0

100

0

9 30 LL

1

1

1

-100

r 150

100

50

Lo

- 40

- 20

1.0

0.5

0.0

L₀

2

2

2

Conclusions

- MUSE will provide unprecedented spectra at 0.4 arcsec resolution, 12s cadence, over a FOV of 170"x170", and context images at 5s cadence (up to 580"x580")
- Launch in 2027, strong synergy with Solar-C EUVST, but also with Solar Orbiter
- MUSE spectroscopy 40x-100x faster and 10x higher res than current spectrographs
- MUSE will provide important constraints and diagnostics for magnetic reconnection and heating in coronal loops
- MUSE will spectroscopically capture the multi-scale nature of coronal heating and solar flares and eruptions
- MUSE will allow comparisons between unprecedented observational constraints and state-of-the-art models:
 - Physics of flares and eruptions: triggers, reconnection/current sheet, non-thermal particle properties, flare energy thermalization, etc
 - Fundamental physical processes: instabilities, non-thermal particle acceleration
 - Connection with space weather and Solar Orbiter/Metis