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Introduction

- The time-dependent magnetofrictional model (TMFM), when driven by accurate
photospheric electrograms, can capture the evolution of active regions (ARs) over
multiple days [1, 4].

- TMFM can self-consistently produce localized highly sheared magnetic fields as well
as flux-ropes, that can evolve to become eruptive (see talk by A. Wagner)

- However, the simplified momentum equation that does not include inertia, makes
TMFM inadequate for modeling fast eruptions [1, 2].

- Premise of this study: use TMFM to simulate an active region up to a given point in
time (close to expected eruption), then transfer the system to a more realistic model
that includes inertia, in this case ideal zero- magnetohydrodynamics (MHD), to study
and assess the subsequent dynamics.

TMFM snapshot as initial condition to MHD
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Case-study: Intensely flaring AR12673

- Intense flaring AR.

- On September 6, 2017, a
failed X2.2 flare on 8:57 UT
was followed by X9.3 flare at
11:53 UT and a fast CME.

- The AR evolution from Gt o
emergence to eruption was el L
studied using TMFM by [3]. -

- Same AR studied by many
using different methods
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Model equations

- TMFM models only the evolution of the magnetic field: Lorentz force evolution quantified using CWsin = ZZUQJ;TQ” 0B _ _VUXE
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- Choice of v4 was not found to be important as - Three different transfer times t. from data-driven TMFM to MHD B
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Eruptive and non-eruptive evolution

- All MHD initial conditions were to the same degree force-free close to the AR.

- For the simulation initialized at time t..f — 24h, the magnetic field of the AR
experiences only minor evolution and does not erupt. In contrast, the simulation at
tof ShOWS clear eruptive behavior.

- With a TMFM run using a larger helicity and energy injection, also t..f — 24h
becomes more dynamic and the simulation at t..s results in a faster eruption.
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Conclusions

- We successfully used TMFM snapshots as initial condition for zero- MHD simulations.

- The dynamics depends on the chosen snapshot, and not on the change of the model.

- Prior to the eruption, the main flux system undergoes a topological change that allows
slip-running reconnection to take place.

- MFRs, once formed, were susceptible to the torus instability.
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What causes the eruption?

- At approx. t.ef — 12h, the eruptive dynamics is facilitated by slip-running
reconnection mediated by a null-point at the edge of the main PIL of the AR:
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occurs, resulting in A and result of slip-running reconnection
sharing common foot points. that is mediated by the null point.

- The change in magnetic topology that enables the slip-running reconnection to take
place becomes apparent between t .. — 24h and t,..f — 12h.

- The field transitions from a fan-spine configuration to become an isolated null-point:

(@)  Earlier: fan-spine topology (b) Later: isolated null-point topology
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