Kinetic Models of Solar Wind Current Sheets

Sophie Boswell¹, Thomas Neukirch¹, Ivan Vasko², Anton Artemyev³ & Oliver Allanson⁴

School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
 W. B. Hanson Center for Space Sciences, University of Texas at Dallas, Texas, USA
 Institute of Geophysics and Planetary Sciences, University of California, Los Angeles, USA
 School of Engineering, Space Environment and Radio Engineering (SERENE) Group, University of Birmingham, UK

Observations

Statistical analyses by Artemyev et al. (2019) of ~200 current sheets observed in the near-Earth solar wind (at 1AU) found:

- Current sheets approximately force-free
- Magnetic field strength constant across sheet
- Plasma beta constant across sheet
- Electron density & temperature asymmetries across sheet
 - Small but systematic
 - Anti-correlated

Existing Theory

Neukirch et al. (2020) modelled the observed asymmetries by adding an additional term to **both** the ion and electron distribution functions (DFs).

Quasineutrality condition is satisfied by $\Phi = 0$.

Can the asymmetries be obtained by modifying only the electron population?

University of St Andrews

Modifying Only the Electron Population

Problem – quasineutrality condition $n_i(A_x, A_y, \Phi) = n_e(A_x, A_y, \Phi; \varepsilon)$ not satisfied by $\Phi = 0!$

Two approaches:

<u>1. Linear Case</u>

ε is a small parameter
Expand about force-free solution

Results & Discussion

- Quasineutrality condition solved analytically
- Ampère's law solved numerically

2. Non-Linear Case

 Quasineutrality condition solved numerically in combination with Ampère's law

Acknowledgements

The authors acknowledge financial support by STFC via DTP ST/X508779/1 (SB) and Consolidated Grant ST/W001195/1 (TN), and NERC via Independent Research Fellowship NE/V013963/1 (OA).

The University of St Andrews is a charity registered in Scotland, No: SC013532

- Shifting from force-free solution around $\bar{z} = 0$ due to setting conditions at the boundaries
- Electron density (*n*) does not match observations
- For DF forms used, it is not possible to model the observed asymmetries when only the electron population is modified

References

Artemyev, A. V., Angelopoulos, V., & Vasko, I. Y. (2019), JGR, 124(6), 3858-3870. Neukirch, T., Vasko, I. Y., Artemyev, A. V., & Allanson, O. (2020), ApJ, 891(1), 86.