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{} Different models depending on the separation
of data between training and validation sets
—> Random sampling (no constraints)
—> With flare separation (same active regions
allowed — not the same flare)
—> With active region separation (strict
separation of active regions)
£+ With random sampling the model might just
interpolate data...
{} But some active regions might be too chaotic or
too close to the limb...

¥ Application of a mixed-input multi-layer
perceptron
— Includes categorical features (flare type +
B/C flare occurences)
{3} On test set: First use a random forest classifier
to estimate the flare type!

{} Flare forecasting has mostly been studied in

form of binary classification models
(e.g. = M-class flare within the next 24 hours — yes/no).

{} Utilize (deep) survival analysis in order to...
— ... increase flexibility by removing decision
boundaries
—> ... increase interpretability by allowing
continuous time analysis

{} Survival function of a random variable T :
Cumulative Distribution Function p!
Sr(t) =P(T>t)=1 — Fp(t)
Probability to survive beyond time t

{} Instantaneous risk of the event occuring at time
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Example: SHARP 407 — MA4.2 Flare : Active Region-Separated Datasets
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Mean-Lifetime Linear Regression Analysis =— on full dataset !

Linear Slope Prediction - Flaring Linear Slope Prediction - Nonflaring X11.0 ‘
¥ Common metrics like accuracy, recall, TSS, etc. .| Wi 14] ] + True positive Accuracy: 69.8%
40+ | peak below = M | X8.5 | True Negative  °
= X ! .

False Positive
False Negative

cannot be applied due to probabilistic nature
and non-existent decision boundaries.
{} Use “concordance (C-) index” and Brier Score.
—> C-index (0-1): Close relationship to
accuracy. Describes the probability that, for
a random pair of events, the predicted
survival times of the two events have the
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—> Brier Score (0-1): Mean square difference
between the survival status € {0, 1} and the FREEOMAVEINE Rl al R IR (Ola8= AR L= Raa (o 1o (I F
predicted survwal probability [O 1]. . — Random sets:

: !  C-index of 0.89 (1 is best, 0 worst)
* (Integrated) Brier Score of 0.03 (O'is best, 1 worst)

— Active region separated sets:
e C-index of 0.71 (1 is best, 0 worst)
* (Integrated) Brier Score of 0.07 (0 is best, 1 worst

Multivariate time series from photosperic vector #
magnetograms in SHARP series (SWAN-SF)

{} Data between May 2010 and Dec. 2018 { '
¥ {3 Cadence: 12-minutes A K - , -_Q,.(,,--g !
¥l ¢ Preprocessing: Incorporate the maximum of 1- f‘w*'
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{} Deep survival analysis provides new avenue for hour-precision
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TOTPOT - agmetic free — BPot)’dA f} Need to test on more recent data

energy density

. £} Find best and most robust criteria for warning systems
{} Expand on features (light-curves or image data)




