Flare Forecasting using Deep Survival Analysis

Moritz Meyer zu Westram, Lucia Kleint Astronomical Institute, University of Bern, Switzerland Contact: moritz.meyerzuwestram@unibe.ch

Introduction

- ♀ Flare forecasting has mostly been studied in form of binary classification models (e.g. \geq M-class flare within the next 24 hours – yes/no).
- Otilize (deep) survival analysis in order to...
 - \rightarrow ... increase flexibility by removing decision boundaries
 - \rightarrow ... increase interpretability by allowing continuous time analysis

Concepts

Survival function of a random variable *T* : *Cumulative Distribution Function* $S_T(t) = P(T > t) = 1 - F_T(t)$ Probability to survive beyond time t *©* Instantaneous risk of the event occuring at time

The Model

- Application of a *mixed-input multi-layer* perceptron
 - \rightarrow Includes categorical features (flare type + B/C flare occurences)
- On test set: First use a *random forest classifier* to estimate the flare type!

Training the Model

- **O** Different models depending on the **separation** of data between training and validation sets
 - \rightarrow Random sampling (no constraints)
 - \rightarrow With flare separation (same active regions allowed – not the same flare)
 - \rightarrow With active region separation (strict separation of active regions)
- **O** With random sampling the model might just interpolate data...
- Or But some active regions might be too chaotic or too close to the limb...

Results

Example: SHARP 407 – M4.2 Flare : Active Region-Separated Datasets

t is given by the **hazard rate** $h_T(t) = \frac{J_T(t)}{S_T(t)}$.

- ♀ In our case the *event* is a **M or X flare**.
- **\Overline We model the hazard rate as the product of an** estimated baseline hazard and an exponential risk: $h(t|X) = h_0(t) \exp(\beta^T \cdot X)$ Cox model
- \mathfrak{Q} Replace $\beta^T \cdot X$ by a **neural network**: $g(X|\beta)$.
- \mathfrak{Q} Handle time as an additional covariate in X.
 - \rightarrow Enables modelling of interactions between time and other covariates.

Machine Learning Evaluation Metrics

- Or Common metrics like accuracy, recall, TSS, etc. cannot be applied due to probabilistic nature and non-existent decision boundaries.
- ♥ Use "concordance (C-) index" and Brier Score.
 - \rightarrow C-index (0-1): Close relationship to accuracy. Describes the probability that, for a random pair of events, the predicted survival times of the two events have the same ordering as their true survival times. Focuses on ordering!
 - → Brier Score (0-1): Mean square difference between the survival status $\in \{0, 1\}$ and the predicted survival probability [0, 1].

Dataset

Ø Multivariate time series from photosperic vector magnetograms in SHARP series (SWAN-SF) Data between May 2010 and Dec. 2018

- Evaluation metrics of (currently) best model:
 - \rightarrow Random sets:
 - C-index of 0.89
 - (Integrated) Brier Score of 0.03
 - \rightarrow Active region separated sets:
 - C-index of 0.71
 - (Integrated) Brier Score of 0.07

- Cadence: 12-minutes
- **Preprocessing:** Incorporate the maximum of 1minute averaged GOES X-ray flux data during the 12 minutes.
- **\Overline** Instead of running on raw data, I use statistics of the data in 4-hour running windows!

Magnetic Field Parameter	$\mathbf{Description}$	Formula
TOTUSJH	Total unsigned current helicity	$\propto \sum B_z \cdot J_z $
TOTBSQ	Total magnitude of Lorentz force	∝ ∑B²
TOTUSJZ	Total unsigned vertical current	$\sum J_z dA$
USFLUX	Total unsigned flux	$\sum B_z dA$
тотрот	Total photospheric magnetic free energy density	$\propto \sum (\boldsymbol{B}^{Obs} - \boldsymbol{B}^{Pot})^2 dA$
14-11		

(0 is best, 1 worst

(1 is best, 0 worst)

(0 is best, 1 worst)

(1 is best, 0 worst)

Conclusion & Outlook

- ♀ New approach to flare forecasting
 - \rightarrow No decision boundaries
 - \rightarrow Probabilistic

Predictions are not binary and allow for continuous time statements

Also means that there are multiple prediction and warning criteria

- **O** Current model is not yet optimized
 - \rightarrow Find best hyperparameters
 - \rightarrow Use other underlying neural networks instead of MLP
 - \rightarrow Develop/adapt neural networks to be suited for the task
- Or Deep survival analysis provides new avenue for hour-precision forecasts

- © Need to test on more recent data
- **O** Find best and most robust criteria for warning systems
- **O** Expand on features (light-curves or image data)