

PROBING PARTICLE ACCELERATION AND TRANSPORT THROUGH **BEHIND-THE-LIMB** GAMMA-RAY SOLAR FLARE OBSERVATIONS

> Melissa Pesce-Rollins INFN-Pisa

on behalf of the Fermi-LAT collaboration

ESPM-17

BEHIND-THE-LIMB GAMMA-RAY FLARES

Gamma-ray BTL flares pose interesting questions regarding the acceleration mechanisms at work and the transport of the accelerated particles

- Two main scenarios have been proposed:
 - CME-driven shock (with back precipitation)
 - Trapping of flare-accelerated ions in extended coronal loops

Observational evidence supporting both scenarios

THE BTL FLARE OF JULY 17, 2021

Pesce-Rollins et al. 2022 ApJ 929 172

- Thanks to STIX we were able to localize position of the active region to be 50° behind the visible limb
- Flare detected Fermi-LAT with a significance $> 15\sigma$
 - The most distant behind-the-limb flare ever observed in gamma-rays!
- Combined observations with STEREO and SDO indicate that the onset of coronal wave coincides with LAT onset on visible limb

Relation between Coronal wave and LAT flux

- Radio spectrum from the Gauribidanur Low-Frequency Solar Spectrograph showing Type II radio burst
- The time derivative of the coronal wave light curve peaks at the same time as the LAT flux
 - Probing the rate of particles precipitating to the visible disk
 - Accelerated protons are coupled with the coronal wave

Correlation also in other BTL flares

	Flare	LAT peak flux time (UT)	EUV peak time (UT)
-	FLSF 2013-10-11 FLSF 2014-09-01 FLSF 2021-07-17 FLSF 2021-09-17	$\begin{array}{l} 07{:}19 \pm 1 \text{ minute} \\ 11{:}11 \pm 1 \text{ minute} \\ 05{:}23 \pm 1 \text{ minute} \\ 04{:}17 \pm 0.5 \text{ minute} \end{array}$	07:16 11:14 05:21 04:17

Pesce-Rollins et al. 2022 ApJ 929 172

Gamma-ray behind-the-limb flares

- At the time of the study, a total of 5 BTL flares had been detected by the LAT
- Analyzed EUV coronal wave data for these flares and found same correlation to be present in four of the flares
 - Flare of 2014-01-06 was lacking gamma-ray statistics to perform the study

CME-shock acceleration is most likely the driving mechanism for the γ-rays observed in these four behind-the-limb flares observed by the LAT

TIME PROFILES OF THE SEPTEMBER 29, 2022 FLARE

From top to bottom:

- Combined dynamic radio spectrum
- ORFEES normalized flux density in three frequencies
- >100 MeV flux points, normalized STIX and GBM time profiles in 32-76 keV
- There is a type II burst during the decay phase of the LAT emission, not the source of the ion acceleration
- from 11:55 a complex group of fast-drifting bursts are also visible, with type III bursts
 - LAT time profile peaks together with GBM and is impulsive-like
 - Unlike the other BTL flares observed by LAT

IMAGING FROM STIX AND EUI/FSI

- STIX thermal (red) and nonthermal (orange) sources overlaid on the 174 Å EUI/FSI image at 11:55:51 UT
- Insert gives the position of Solar Orbiter and Earth relative to the flare site. Active region 16° behind the eastern visible limb
- Large loops still present even at 13:05 UT

EUV AND RADIO IMAGING DURING THE FLARE

- SDO AIA 131 Å images of the Sun during the flaring activity
- Loops seen up to 120 Mm above the solar limb
- Radio geometry is consistent with a loop structure that connects the parent active region behind the limb to the disk

COMPARISON WITH OTHER BTL/ON-DISK FLARES

- Compared basic gamma-ray properties of this event with the impulsive on disk flare SOL2011-09-06
- The flare of September 29, 2022 is remarkably similar to the on disk flare
- Data indicates that >100 MeV emission originates from particles accelerated in large loops

Flare	Rise time (min:sec)	ΔPeak (sec)	Peak Flux $(10^{-5} \text{ ph cm}^{-2} \text{ s}^{-1})$	AR
2013-10-11	9:00 ±1:00	600 ± 60	49±2	N21E103
2014-09-01	9:00 ±1:00	240 ± 60	C 565±21 - SC	N14E126
2021-07-17	8:00 ±1:00		4 ± 1	S20E140
2021-09-17	1:09 ±0:07	180 ± 60	67±20	S30E100
2022-09-29	$0:18 \pm 0:04$	5 ± 4	$44{\pm}14$	N26E106
2011-09-06	0:16 ± 0:01	10 ± 1	50±16	N14W18

SUMMARY

- The coupling between the coronal waves and the ion acceleration in four behind-the-limb gamma-ray solar flares provides supporting evidence for the shock wave scenario
- The flare of September 29, 2022 is the first case where there is observational evidence for ion acceleration in large loops for a gamma-ray behind-the-limb solar flare
- It appears that there are more ways than one to produce the gamma-ray emission in behind-the-limb flares :-)
 - This could be the case also for the long duration gamma-ray flares

Space Telescope

SPARE SLIDES

Gamma-ray Space Telescope

- Time-differenced ORFEES dynamic spectrum
- Strong bursts accompany the microwave emission and the HXR burst observed by GBM
- Overall the bursts cluster in four slowly-drifting chains

► At 11:54:57 UT: the sources at different frequencies appear superposed

Magnetic field lines that guide the electron beams are parallel to the line of sight

At 11:55:04 UT: the southward location of the lower frequency source is a projection effect

Parent magnetic structure connecting the AR to the visible disk

At 11:56:28 UT: high-frequency source is now south-westward of the low-frequency sources

Positively-drifting burst is observed in the Earth-ward leg of the structure

Connection between BTL and on-disk HXR Emission

- STIX time profile is bursty whereas GBM is smooth
- Time derivative of the GBM and microwaves to emphasize the changes
- Three distinct components of the STIX profile have counterparts in the derivative curves
- Suggesting emission seen by STIX and from Earth come from same processes of acceleration
 - Electron energy release signatures smeared out by trapping in large loops

NRH MAPS

- Continuum source at 432 MHz time integrated over 11:56:20 -11:56:50 UT
- Fluctuations from the residual weak burst and sidelobes of the noise storm near disk center have been filtered out

TIME DELAY AND TRAPPING

Assuming that the STIX time profile represents the injection function

- The integrated count rate (dotted line), taken to be a proxy of the number of electrons in the trap
- The two vertical dashed lines mark the times when the count rate and the integrated count rate reach half their maximum level