221 Penetrating Waves along Spicules to the Corona

Yoshihiro Naito, Joten Okamoto, and Hirohisa Hara (NAOJ/SOKENDAI) (e-mail: yoshihiro.naito@grad.nao.ac.jp)

Background

Alfvénic waves in coronal holes

- Most promising candidate for fast solar wind acceleration
- Propagation along open field lines in coronal holes

Energy flux of Alfvénic waves in chromosphere

- Propagatation along spicules × spicule: jet elongated along magnetic field line
- Enough energy flux to maintain corona & fast solar wind (e.g., De Pontieu+ 2007)
- Partial reflection in the transition region (TR) (Okamoto & De Pontieu 2011; Hollweg+ 1982)-
- \rightarrow Energy flux transported to corona is not clear. 0.0 0.5 1.0 1.5 2.0 2.5

Fig 1. De Pontieu+ 2007

spicule

200

150 -

50

ர ரி 100 ந

Purpose of this study

Estimate energy flux penetrating corona of Alfvénic waves propagating along spicules

To achieve our purpose, we need to...

 Detect ascending & descending waves along spilling - Estimate energy flux of each detected wave

120 wave packets were detected!

- 108 wave packets were classified as Alfvénic waves.

0 -400-200 0 200 400	0 2 4 6 8 10		Ascending	Descending
[km s ⁻¹]	$m s^{-1}$] [km s ⁻¹]		65	43
	Electron density	Acoustic waves	6	6
	20	Tab 2. Modes of	detected wa	ave packets
		- Mean of t	he param	neters
	5	$V_{\rm p}$: 105 ±	75 km s ⁻¹	
	$0 \frac{1}{1} 2 3 4 5$	δv : 4.0 ±	1.6 km s^{-1}	
[s]	$[10^{10} \text{ cm}^{-3}]$	$P: 141 \pm$	45 s	<i>※ P</i> : period
Fig.5 Parameters of as descending (blue) Alf	scending (red) & vénic wave packets	$n_{\rm e}$: 2.9 ± (0.9×10^{10}	$^{0} \text{ cm}^{-3}$

Energy flux of ascending Alfvénic wave: 1.1×10^5 erg cm⁻² s⁻¹ decending Alfvénic wave: 5.5×10^4 erg cm⁻² s⁻¹

Discussion: Energy flux transported to corona

 $1.1 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1}$ (Averaged over 43 descending Alfvénic waves)

Observation

[Mm]

limb

10 -

5

IRIS Si IV spectra (log T[K] ~ 4.9)

- Sit-and-stare mode
- Short cadence $(5 \sim 6 s)$

				. (1)	 A CONTRACTOR CONTRACTOR 		Mm
date	duration	cadence	position	the			A.
2013/09/29	51 min	5.1 s	-3", 971"			K	
2014/09/10	65 min	5.4 s	-3", 907"	fre	mer and		limb
2014/12/04	57 min	5.6 s	-53", -952"	ght			-
2015/01/10 ①	42 min	5.2 s	-9", -996"	- E E	-10 -5	0	5
2015/01/10 2	54 min	5.2 s	-9″, -997″	-	Solar-X	arcs	ec]
Tab.1 List of observations			Fig 2.1400 Å SJI (2013/09/29)				

Tad. I LISU OF ODSERVATIONS

- Optically thin Si IV emission

 \rightarrow Superposition of LOS velocity components

 \times Only one velocity component was assumed in this study.

 \rightarrow Velocity amplitude would be underestimated.

1. Emphasize 30~300s periodic

 $2.1 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1}$ (Averaged over 65 ascending Alfvénic waves)

& Acoustic waves would dissipate before reaching to corona (Hollweg 1981). \dot{X} Assuming randomly directional oscillations (δv would be multiplied by $\sqrt{2}$.)

Fig 6. Schematic view of transported energy flux to corona

Energy flux transported to corona: 1.0×10^5 erg cm⁻² s⁻¹

1/5 of required energy flux for fast solar wind acceleration $(5 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1}; \text{ c.f., Withbroe 1988})$

Discussion: Underestimate of velocity amplitude

Fig 7. Time variation of observed spectra with multiple velocity components Green line in left panel: LOS velocity emphasized with 30~300s motion Green lines in right panel: results of single Gaussian fit

- One of the components (red arrow) shows periodic variation with 10 km s⁻¹ (<u>twice</u> the velocity amplitude assumed one velocity component existed).

- θ cannot be obtained only by LOS velocity.
- Waves with amplitudes larger than slit width cannot be detected. LOS direction \rightarrow Tracking transverse motion

- motions of LOS velocity at each height step
- 2. Track sinusoidal time variation of LOS velocity taking cross-correlation (until correlation coefficient becomes lower than 0.7)
- 3. Estimate energy flux $F = m_{\rm p} n_{\rm e} \delta v^2 V_{\rm p}$ for each detected wave packet

from the limb 6 5 ght 40 0 80 120 Hei Time [s] Fig 4. Space-time plot of LOS velocity during wave packet was detected

 $n_{\rm e}$ electron density: time-averaged EM of Si IV emission at each height δv velocity amplitude: sinusoidal fit for LOS velocity at each height $V_{\rm p}$ phase velocity: linear fit for time lags of cross-correlation as a function of height

4. Determine mode of detected wave packets by taking correlation between LOS velocity & intensity correlation < 0.65: Alfvénic waves correlation > 0.65: acoustic waves (e.g., Liu + 2014)

transverse motion of spicule

in plane of sky is important.

Conclusion

We have estimated energy flux for both ascending & descending Alfvénic waves propagating along spicules for the first time.

Energy flux transported to corona: 1.0×10^5 erg cm⁻² s⁻¹

X Assuming all descending waves are due to ascending waves partially reflected in TR

1/5 of required energy flux for fast solar wind acceleration

 \rightarrow The key is to resolve the underestimate of δv ($\delta v^2 \propto F$).

Future work

- Separation of multiple velocity components
- Tracking transverse motion in 2 directions (in LOS direction & plane of the sky)