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• The number of photons per resolution element is relatively constant

• The solar surface evolves rapidly

The problem of reconstructing magnetic fields:

The usual solutions:
• Longer integration times (while the solar surface keeps evolving!)

• Spatio-temporal binning (affects all model parameters)

• Filtering of Q,U&V (makes them inconsistent with Stokes I)
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Fig. 4. Time-series at a single pixel within the sunspot is shown in the
top three-panels, in Stokes I (top left) and V (top middle). The top-right

panel corresponds to a synthetic Stokes V profile computed using the
weak-field approximation to fit Bl.o.s. In both cases, the Stokes V profiles
are scaled identically between ±2.2% relative to the average quiet-Sun
continuum intensity. The resulting longitudinal magnetic field strenght
is plotted in the second row (solid-grey line). We have smoothed that
result using a median filter of 3 time-steps, which is illustrated with
a black-crossed line. For clarity, the lowermost panels illustrate the
Stokes I and V profiles at a quiescent state (black) and during the UF
(blue).

pixel harbors a plane-parallel atmosphere. All Zeeman sub-
levels originating from a given atomic level are assumed to be
equally populated, discarding any quantum interference between
them, as proposed by Trujillo Bueno & Landi Degl’Innocenti
(1996). We use a Ca ii model atom consisting of five bound

level plus a continuum (see Leenaarts et al. 2009) and the colli-
sional broadening is computed according to Barklem & O’Mara
(1998).

The velocity-free approximation is used to compute the atom
population-densities. By neglecting the velocity-field, only half
of the profile needs to be computed and fewer quadrature an-
gles are used to compute the mean intensity at each depth-point.
This approximation is justified by the very broad shape of the
Ca ii lines and the fact that the atomic level populations are dom-
inated by the radiation field at the line core. Once the atomic
populations are converged, the emerging full-Stokes vector is
computed including the velocity field using a quadratic DELO-
Bezier formal solution of the polarized radiative transfer equa-
tion (de la Cruz Rodríguez & Piskunov 2013).

Scattering polarization is not included in our calculations
but this is not a problem because the magnetic field is su�-
ciently strong to produce Zeeman-dominated Stokes profiles. In
the �8542 line, it is safe to assume Zeeman induced signal when
the magnetic field is stronger than approximately 100 G (further
details can be found in Manso Sainz & Trujillo Bueno 2010;
Carlin et al. 2013).

NICOLE has been previously used in LTE studies
(Socas-Navarro 2011; Scharmer et al. 2013) and validated in
non-LTE using a chromospheric 3D MHD numerical simulation
(de la Cruz Rodríguez et al. 2012). In that study, the synthetic
profiles are degraded with a realistic CRISP transmission pro-
file. In order to properly convolve with the instrumental profile,
the synthetic spectra are calculated first in a fine grid of regularly
spaced wavelength points. The inversion code works internally
with such finely sampled profiles except when it comes to com-
paring with observations, at which point only the observed line
positions are used to drive the inversion.

The inversion process is initialized with a smoothed version
of the HSRA atmosphere (Gingerich et al. 1971). Node points
are located equidistantly along the depth-scale, where correc-
tions to the model are applied. The correction in between nodes
is determined as a cubic Bezier-spline interpolation (see Auer
2003) of the node values.

To improve convergence properties, the inversion is run in
two cycles as proposed by Ruiz Cobo & del Toro Iniesta (1992).
In the first cycle, fewer degrees of freedom (nodes) are pre-
scribed. Once the solution cannot be further improved, a new
cycle is started with an (slightly) increased number of nodes. The
degrees of freedom used for each cycle, summarized in Table 1,
have been obtained after some trial-and-error experiments with a
few sample profiles. Note that we have used fewer nodes than in
de la Cruz Rodríguez et al. (2012) because our observations are
slightly undersampled around line core, and very few points are
present in the photospheric wings of the line. Therefore, some
depth information is lost with respect to what could be obtained
with more observables.

The equation of state defines a unique relationship among
temperature, electron pressure and gas pressure. If two of them
are known, then the third one can be obtained from it. During
the inversion, however, only the temperature is set for any guess
model. Therefore, hydrostatic equilibrium is used to compute the
gas pressure.

5. Atmospheric properties during umbral flashes

To characterize the atmospheric state during UFs, we have in-
verted two time steps from the series, corresponding to �t = 16 s
and �t = 64 s in Fig. 3. To accelerate the computations, only
every second pixel in both spatial directions was inverted. We
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Fig. 2. Regularisation matrix for the linear case. Each row corre-
sponds to the regularisation function for one pixel in space and time.
For displaying purposes, we assume an observation with dimensions
nt = 3, ny = 4, nx = 4 and regularisation weights ↵ = 1, � = 1, and
� = 2.5. The outermost bands (darker blue) correspond to the temporal
regularisation terms, whereas the inner light-blue terms originate from
the spatial regularisation.

methods based on explicit radiative transfer, whether in the
Milne-Eddington approximation (ME), LTE, or full non-LTE,
inference methods can be implemented as an extension of the
method described in de la Cruz Rodríguez (2019). The WFA is
linear, and requires only a single matrix inversion to yield a solu-
tion; while the rest of the aforementioned inference methods are
non-linear and can be solved using the Levenberg-Marquardt
algorithm (LM, Levenberg 1944; Marquardt 1963).

In the present paper, we provide implementations for both
cases. As a proof of concept, we apply the temporally regularised
WFA to observations of quiet Sun in the Ca ii 854.2 nm line, and
apply temporally regularised ME inversions to observations of
quiet Sun in the Fe i 617.3 nm line. We chose to illustrate the
non-linear case with the ME approximation applied to a photo-
spheric line because it is easy to implement and can be quickly
inverted; the formalism also remains identical for LTE and non-
LTE inversions of chromospheric lines.

The observations that we use here are obtained with a
Fabry-Perot tunable-filter instrument. The individual line posi-
tions contained in the data are not taken simultaneously, but
sequentially. We assume that one line scan comprises a time
step that will be represented by one atmosphere model. As we
mention above, this is an approximation, as the solar evolution
timescale is smaller than the scan time, and this can translate
into errors in the inferred model parameters (e.g. Felipe et al.
2018). We stress that temporal regularisation can also be used
for integral-field spectropolarimeters. These record all wave-
lengths simultaneously, and the integration time used in a time
step is mainly set by the desired S/N, and this time is sig-
nificantly shorter than would be needed by a tunable-filter
instrument.

2. Observations

We use two datasets acquired with the CRISP instrument (see
Scharmer 2006; Scharmer et al. 2019; de Wijn et al. 2021) at
the Swedish 1-m Solar Telescope. The datasets were reduced
with the SSTRED pipeline (de la Cruz Rodríguez et al. 2015;
Löfdahl et al. 2021), and processed with the MOMFBD algo-
rithm to minimise atmospheric distortions (Löfdahl 2002;
Van Noort et al. 2005). The polarimetric calibration was
individually performed for each pixel as described in
van Noort & Rouppe van der Voort (2008).

The first dataset, recorded on 14 July 2020 starting at
08:40 UT at disc centre, consists of a four-line program with
data acquired in the Ca ii 854.2 nm, Fe i 617.3 nm, H↵ and
Mg i 517.3 nm lines. We only used the 854.2 nm data in this
study. The line was sampled between ±30 pm from line cen-
tre in regular steps of 7.5 pm, with a total integration time per
wavelength of 0.91 s. The overall cadence – including all four
lines – is 34.2 s, whereas the total acquisition time for one
854.2 nm scan was approximately 13 s. The upper row in Fig. 1
illustrates the four Stokes parameters in the first time step at
+15 pm from line centre. The target is a quiet-Sun region that
harbours two small network patches with opposite polarity. We
estimated the noise level based on the outermost wavelength
points. The standard deviations of the noise were found to be
�Q,U,V = (3.9, 2.6, 2.7) ⇥ 10�3.

The second dataset, recorded on 26 May 2021 start-
ing at 09:48 UT on coordinates (X,Y) = (698, 387) (µ =
0.54), consists of a patch of quiet Sun close to active
region AR 12824. We recorded data in the Ca ii 854.2 nm and
Fe i 617.3 nm lines, but we only used the 617.3 nm data in
this study. The Fe i 617.3 nm line was sampled at �� =
[�17.5, �10.5, �7, �3.5, 0, 3.5, 7, 10.5, 14, 17.5] pm from
line centre, with a total integration time per wavelength of 0.28 s.
The selected FOV is illustrated in the bottom row of Fig. 1 in
all four Stokes parameters at �7 pm from line centre. The back-
ground noise as estimated from the continuum point has standard
deviations of �Q,U,V = (1.8, 2.3, 2.5) ⇥ 10�3.

3. Method

3.1. The linear case: Application to the weak-field
approximation

When the dependence of the observable on the model parame-
ters is linear, spatial and temporal regularisation can be trivially
imposed. The weak-field approximation (Landi Degl’Innocenti
& Landi Degl’Innocenti 1973; Je↵eries et al. 1989) allows us to
write analytical expressions for the Q, U, and V profiles that are
linear in B2

? and Bk.
We extend the implementation of Morosin et al. (2020) by

also adding regularisation in the temporal dimension. In order
to derive general expressions for the linear case, let us assume
that we can express our synthetic prediction si of the ith data
point in a pixel as si = ciP, where ci is a quantity that does
not depend on the model parameters (but that can change for
each data point) and P is a model parameter. For a given pixel
at coordinates t, y, x, we can write the regularised merit function
�2 as:
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Milne-Eddington approximation (ME), LTE, or full non-LTE,
inference methods can be implemented as an extension of the
method described in de la Cruz Rodríguez (2019). The WFA is
linear, and requires only a single matrix inversion to yield a solu-
tion; while the rest of the aforementioned inference methods are
non-linear and can be solved using the Levenberg-Marquardt
algorithm (LM, Levenberg 1944; Marquardt 1963).

In the present paper, we provide implementations for both
cases. As a proof of concept, we apply the temporally regularised
WFA to observations of quiet Sun in the Ca ii 854.2 nm line, and
apply temporally regularised ME inversions to observations of
quiet Sun in the Fe i 617.3 nm line. We chose to illustrate the
non-linear case with the ME approximation applied to a photo-
spheric line because it is easy to implement and can be quickly
inverted; the formalism also remains identical for LTE and non-
LTE inversions of chromospheric lines.

The observations that we use here are obtained with a
Fabry-Perot tunable-filter instrument. The individual line posi-
tions contained in the data are not taken simultaneously, but
sequentially. We assume that one line scan comprises a time
step that will be represented by one atmosphere model. As we
mention above, this is an approximation, as the solar evolution
timescale is smaller than the scan time, and this can translate
into errors in the inferred model parameters (e.g. Felipe et al.
2018). We stress that temporal regularisation can also be used
for integral-field spectropolarimeters. These record all wave-
lengths simultaneously, and the integration time used in a time
step is mainly set by the desired S/N, and this time is sig-
nificantly shorter than would be needed by a tunable-filter
instrument.

2. Observations

We use two datasets acquired with the CRISP instrument (see
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methods based on explicit radiative transfer, whether in the
Milne-Eddington approximation (ME), LTE, or full non-LTE,
inference methods can be implemented as an extension of the
method described in de la Cruz Rodríguez (2019). The WFA is
linear, and requires only a single matrix inversion to yield a solu-
tion; while the rest of the aforementioned inference methods are
non-linear and can be solved using the Levenberg-Marquardt
algorithm (LM, Levenberg 1944; Marquardt 1963).

In the present paper, we provide implementations for both
cases. As a proof of concept, we apply the temporally regularised
WFA to observations of quiet Sun in the Ca ii 854.2 nm line, and
apply temporally regularised ME inversions to observations of
quiet Sun in the Fe i 617.3 nm line. We chose to illustrate the
non-linear case with the ME approximation applied to a photo-
spheric line because it is easy to implement and can be quickly
inverted; the formalism also remains identical for LTE and non-
LTE inversions of chromospheric lines.

The observations that we use here are obtained with a
Fabry-Perot tunable-filter instrument. The individual line posi-
tions contained in the data are not taken simultaneously, but
sequentially. We assume that one line scan comprises a time
step that will be represented by one atmosphere model. As we
mention above, this is an approximation, as the solar evolution
timescale is smaller than the scan time, and this can translate
into errors in the inferred model parameters (e.g. Felipe et al.
2018). We stress that temporal regularisation can also be used
for integral-field spectropolarimeters. These record all wave-
lengths simultaneously, and the integration time used in a time
step is mainly set by the desired S/N, and this time is sig-
nificantly shorter than would be needed by a tunable-filter
instrument.

2. Observations

We use two datasets acquired with the CRISP instrument (see
Scharmer 2006; Scharmer et al. 2019; de Wijn et al. 2021) at
the Swedish 1-m Solar Telescope. The datasets were reduced
with the SSTRED pipeline (de la Cruz Rodríguez et al. 2015;
Löfdahl et al. 2021), and processed with the MOMFBD algo-
rithm to minimise atmospheric distortions (Löfdahl 2002;
Van Noort et al. 2005). The polarimetric calibration was
individually performed for each pixel as described in
van Noort & Rouppe van der Voort (2008).

The first dataset, recorded on 14 July 2020 starting at
08:40 UT at disc centre, consists of a four-line program with
data acquired in the Ca ii 854.2 nm, Fe i 617.3 nm, H↵ and
Mg i 517.3 nm lines. We only used the 854.2 nm data in this
study. The line was sampled between ±30 pm from line cen-
tre in regular steps of 7.5 pm, with a total integration time per
wavelength of 0.91 s. The overall cadence – including all four
lines – is 34.2 s, whereas the total acquisition time for one
854.2 nm scan was approximately 13 s. The upper row in Fig. 1
illustrates the four Stokes parameters in the first time step at
+15 pm from line centre. The target is a quiet-Sun region that
harbours two small network patches with opposite polarity. We
estimated the noise level based on the outermost wavelength
points. The standard deviations of the noise were found to be
�Q,U,V = (3.9, 2.6, 2.7) ⇥ 10�3.

The second dataset, recorded on 26 May 2021 start-
ing at 09:48 UT on coordinates (X,Y) = (698, 387) (µ =
0.54), consists of a patch of quiet Sun close to active
region AR 12824. We recorded data in the Ca ii 854.2 nm and
Fe i 617.3 nm lines, but we only used the 617.3 nm data in
this study. The Fe i 617.3 nm line was sampled at �� =
[�17.5, �10.5, �7, �3.5, 0, 3.5, 7, 10.5, 14, 17.5] pm from
line centre, with a total integration time per wavelength of 0.28 s.
The selected FOV is illustrated in the bottom row of Fig. 1 in
all four Stokes parameters at �7 pm from line centre. The back-
ground noise as estimated from the continuum point has standard
deviations of �Q,U,V = (1.8, 2.3, 2.5) ⇥ 10�3.

3. Method

3.1. The linear case: Application to the weak-field
approximation

When the dependence of the observable on the model parame-
ters is linear, spatial and temporal regularisation can be trivially
imposed. The weak-field approximation (Landi Degl’Innocenti
& Landi Degl’Innocenti 1973; Je↵eries et al. 1989) allows us to
write analytical expressions for the Q, U, and V profiles that are
linear in B2

? and Bk.
We extend the implementation of Morosin et al. (2020) by

also adding regularisation in the temporal dimension. In order
to derive general expressions for the linear case, let us assume
that we can express our synthetic prediction si of the ith data
point in a pixel as si = ciP, where ci is a quantity that does
not depend on the model parameters (but that can change for
each data point) and P is a model parameter. For a given pixel
at coordinates t, y, x, we can write the regularised merit function
�2 as:
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in the strong network patches, small-scale loop-like features
can be discerned in the FOV. The inclusion of spatial regular-
isation greatly decreases the noise in the background, making
the small-scale loop-like features much more visible compared
to the unconstrained case. Temporal regularisation alone also
decreases the noise, perhaps yielding a slightly sharper model
than the spatially regularised one, while also decreasing the
temporal fluctuations of the background noise along the time
series. The combined action of temporal and spatial regularisa-
tion further decreases the noise compared to the previous cases
and yields a model with the highest S/N. The standard devi-
ation of the noise in the magnetic field, as measured in the
lower-right corner of the image, is reduced from 18 G in the
unconstrained case to 9 G in the fully regularised case. The
improvement induced by spatial regularisation is particularly
obvious in the movie showing the entire time series. The upper
panel in Fig. 4 further illustrates the reduction of the noise in the
regularised reconstructions along a slice through the FOV.

3.2. The non-linear case: Application to Milne-Eddington
inversions

The LM algorithm is one of the most e�cient methods for
reconstructing the parameters of non-linear models from obser-
vations. Regularised LM implementations are used in di↵erent
fields of astrophysics in order to constrain the parameters of the
model under consideration (e.g. Piskunov & Kochukhov 2002;
de la Cruz Rodríguez et al. 2019). The regularisation is repre-
sented by a set of Npen penalty functions rn(p) that are squared
in order to have ` � 2 norm regularisation. Following the nota-
tion of de la Cruz Rodríguez et al. (2019), the merit function �2

can generally be expressed as a function of the model parameter
vector p and the data points x:

�2(p, x) =
1

Ndata

NdataX

k=1

"
ok � s(p, xk)
�k

#2
+

NpenX

n=1

↵nrn(p)2, (3)

where the weights ↵n regulate the influence of the regularisa-
tion terms in the merit function. We note that, unlike in the lin-
ear case, the penalty functions are not independently defined for
each pixel (see below).

The model corrections predicted by the regularised LM algo-
rithm can be derived by linearising Eq. (3) and taking the deriva-
tive with respect to the model parameters. The correction to the
model parameters (�p), in vector form, is given by a linear sys-
tem of equations:

(J · JT + L · LT )�p = J · (o� s) � L · r, (4)

where J is the Jacobian matrix of the model and L is the Jaco-
bian matrix of the penalty functions. In this expression, all con-
stants and normalising factors are implicitly contained in the cor-
responding vectors. For any given parameter pt,y,x, the regulari-
sation functions are defined as:
X

r2
t,y,x = ↵t(pt,y,x � pt�1,y,x)2 + ↵s(pt,y,x � pt,y�1,x)2

+ ↵s(pt,y,x � pt,y,x�1)2 + ↵l(pt,y,x � p0)2, (5)

where we have included spatial, temporal, and low-norm regu-
larisation terms.

If the penalty functions have a linear dependence on the
model parameters, as in the ones used in this study, we can
express them as r = Lp + c, where the coupling is contained in
the Jacobian matrix L. Figure 5 illustrates the structure of L for a
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Fig. 4. Vertical cuts of the reconstructed magnetic field. The upper panel
shows a reconstruction of Bk with the weak-field approximation from
the 854.2 nm dataset along a cut indicated with red markers in Fig. 3.
The black curve shows the unconstrained reconstruction, and the red
curve shows the reconstruction with both spatial and temporal regulari-
sation. A similar plot is shown in the lower panel for the reconstruction
of B? from the ME inversion of the 617.3 nm dataset presented in Fig. 7.

problem with nt = 3, ny = 4, nx = 4, and npar = 2. The maximum
number of penalty functions should be npen < 4nxnynt, as some
functions are not defined at the edges of the problem. Figure 6
illustrates the approximate Hessian matrix of the regularisation
functions L · LT . The size of the approximate Hessian matrix is
set by the total number of free parameters of the problem, which
is also the size of one row of the LT matrix (4 ⇥ 4 ⇥ 3 ⇥ 2 = 96).
In the latter, the outer dark blue bands originate from the tem-
poral regularisation, whereas the inner light-blue bands contain
the spatial coupling terms. For npar = 1, this matrix is identical
in form to that shown in Fig. 2 for the linear case.

In this case, we are only including penalty functions that
compare a parameter value with its neighbouring values at t � 1,
y�1, and x�1. However, because the product L ·LT is similar to
a correlation of each penalty function with all others, the result-
ing coupling matrix in the left-hand side has identical structure
to that in the linear case where we also include explicit compar-
isons with the values at t + 1, y + 1, and x + 1.

In a previous study, de la Cruz Rodríguez (2019) imple-
mented a multi-resolution inversion code that included spatial
regularisation and allowed us to deal with the e↵ects of the
telescope point spread function in ME inversions (PyMilne1).
We extended this code to include temporal regularisation terms.
With these changes, the code can now invert a time series of
maps as a global problem. We inverted a time-series of 14 line

1 https://github.com/jaimedelacruz/pyMilne
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in the strong network patches, small-scale loop-like features
can be discerned in the FOV. The inclusion of spatial regular-
isation greatly decreases the noise in the background, making
the small-scale loop-like features much more visible compared
to the unconstrained case. Temporal regularisation alone also
decreases the noise, perhaps yielding a slightly sharper model
than the spatially regularised one, while also decreasing the
temporal fluctuations of the background noise along the time
series. The combined action of temporal and spatial regularisa-
tion further decreases the noise compared to the previous cases
and yields a model with the highest S/N. The standard devi-
ation of the noise in the magnetic field, as measured in the
lower-right corner of the image, is reduced from 18 G in the
unconstrained case to 9 G in the fully regularised case. The
improvement induced by spatial regularisation is particularly
obvious in the movie showing the entire time series. The upper
panel in Fig. 4 further illustrates the reduction of the noise in the
regularised reconstructions along a slice through the FOV.

3.2. The non-linear case: Application to Milne-Eddington
inversions

The LM algorithm is one of the most e�cient methods for
reconstructing the parameters of non-linear models from obser-
vations. Regularised LM implementations are used in di↵erent
fields of astrophysics in order to constrain the parameters of the
model under consideration (e.g. Piskunov & Kochukhov 2002;
de la Cruz Rodríguez et al. 2019). The regularisation is repre-
sented by a set of Npen penalty functions rn(p) that are squared
in order to have ` � 2 norm regularisation. Following the nota-
tion of de la Cruz Rodríguez et al. (2019), the merit function �2
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vector p and the data points x:
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where the weights ↵n regulate the influence of the regularisa-
tion terms in the merit function. We note that, unlike in the lin-
ear case, the penalty functions are not independently defined for
each pixel (see below).

The model corrections predicted by the regularised LM algo-
rithm can be derived by linearising Eq. (3) and taking the deriva-
tive with respect to the model parameters. The correction to the
model parameters (�p), in vector form, is given by a linear sys-
tem of equations:

(J · JT + L · LT )�p = J · (o� s) � L · r, (4)

where J is the Jacobian matrix of the model and L is the Jaco-
bian matrix of the penalty functions. In this expression, all con-
stants and normalising factors are implicitly contained in the cor-
responding vectors. For any given parameter pt,y,x, the regulari-
sation functions are defined as:
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where we have included spatial, temporal, and low-norm regu-
larisation terms.

If the penalty functions have a linear dependence on the
model parameters, as in the ones used in this study, we can
express them as r = Lp + c, where the coupling is contained in
the Jacobian matrix L. Figure 5 illustrates the structure of L for a
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Fig. 4. Vertical cuts of the reconstructed magnetic field. The upper panel
shows a reconstruction of Bk with the weak-field approximation from
the 854.2 nm dataset along a cut indicated with red markers in Fig. 3.
The black curve shows the unconstrained reconstruction, and the red
curve shows the reconstruction with both spatial and temporal regulari-
sation. A similar plot is shown in the lower panel for the reconstruction
of B? from the ME inversion of the 617.3 nm dataset presented in Fig. 7.

problem with nt = 3, ny = 4, nx = 4, and npar = 2. The maximum
number of penalty functions should be npen < 4nxnynt, as some
functions are not defined at the edges of the problem. Figure 6
illustrates the approximate Hessian matrix of the regularisation
functions L · LT . The size of the approximate Hessian matrix is
set by the total number of free parameters of the problem, which
is also the size of one row of the LT matrix (4 ⇥ 4 ⇥ 3 ⇥ 2 = 96).
In the latter, the outer dark blue bands originate from the tem-
poral regularisation, whereas the inner light-blue bands contain
the spatial coupling terms. For npar = 1, this matrix is identical
in form to that shown in Fig. 2 for the linear case.

In this case, we are only including penalty functions that
compare a parameter value with its neighbouring values at t � 1,
y�1, and x�1. However, because the product L ·LT is similar to
a correlation of each penalty function with all others, the result-
ing coupling matrix in the left-hand side has identical structure
to that in the linear case where we also include explicit compar-
isons with the values at t + 1, y + 1, and x + 1.

In a previous study, de la Cruz Rodríguez (2019) imple-
mented a multi-resolution inversion code that included spatial
regularisation and allowed us to deal with the e↵ects of the
telescope point spread function in ME inversions (PyMilne1).
We extended this code to include temporal regularisation terms.
With these changes, the code can now invert a time series of
maps as a global problem. We inverted a time-series of 14 line

1 https://github.com/jaimedelacruz/pyMilne
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Codes publicly available with commented examples: 
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