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The problem of reconstructing magnetic fields:
o Larger telescopes collect more photons but resolve smaller scales

 The number of photons per resolution element is relatively constant

* The solar surface evolves rapidly

The usual solutions:
* Longer integration times (while the solar surface keeps evolving!)

o Spatio-temporal binning (affects all model parameters)

 Filtering of Q,U&V (makes them inconsistent with Stokes |)
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Our proposal

In the chromosphere, magnetic fields are expected to evolve slower than
other physical parameters (temperature, density, velocity)

We need the high S/N ratio for the reconstruction of the magnetic field but
not necessarily for the other parameters

|deal case for the use of regularization techniques
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Reqularized Weak-Field approximation

* In standard form, each pixel is assumed to be
independent from the rest

 But we know that the model parameters are
correlated in surrounding pixels

 The model parameters are not random noise
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Regularlzed Weak-Field approximation

r—1 r+ 1

* In standard form, each pixel is assumed to be
independent from the rest

 But we know that the model parameters are
correlated in surrounding pixels

 The model parameters are not random noise
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Reqularized Weak-Field approximation
A test of the weak-field approximation applied to MiHi Ha data
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The non-linear case: Milne-Eddington inversions
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Conclusions

Spatio-temporal regularization augments the reconstructions of the magnetic
field vector close to the diffraction limit

Allows for an optimal reconstruction of all model parameters in inversions,
without modifying the data

These techniques are particularly important for pushing the limits of magnetic
field reconstructions from state of the art facilities (DKIST, EST, SST, Sunrise lll)

Codes publicly available with commented examples:
https://qgithub.com/jaimedelacruz/fullReg wfa
https://github.com/jaimedelacruz/pyMilne

This project has been funded by the European Union through the European Research Council (ERC) under the Horizon Europe program (MAGHEAT, grant agreement 101088184).


https://github.com/jaimedelacruz/fullReg_wfa
https://github.com/jaimedelacruz/pyMilne

