KAPPA Package: Multi-Ionization and Suppression of Dielectronic Recombination for the Ionization Equilibria of Kappa Distributions

Elena Dzifčáková, Jaroslav Dudík, Alena Zemanová

asu Institute of the Czech Academy of Sciences

Astronomical

Astronomical Institute, Czech Academy of Sciences, Fričova 298, 25165 Ondřejov, Czech Republic

Motivation

- Supra-thermal component ("high-energy tail") of the particle distribution is observed in flares and solar wind (*Maksimovic et al.*, 1997 GeoRL 24, 1151; Livadiotis et al., 2018, ApJ 853, 142).
- Non-Maxwellian distributions with a high energy tail – result of the strong gradient temperature and/or density (e.g. Roussel-Dupré 1980; Shoub 1983; Bradshaw et al. 2012), heating, reconnection (e.g. Testa et al. 2014; Klimchuk 2010; Gontikatis et al. 2013), presence of some type of waves (e.g.

Ionization equilibria with multi-ionization

Data: Hahn *et al*. (2017)

Effect of the multi-ionization on the ionization equilibrium for κ -distribution increases with decreasing κ . it is different for different element and ions. For Maxwellian distributions, this effect can be usually neglected.

Density suppression of dielectronic recombination

Data: Nikolić *et al*. (2013, 2018)

Suppression of dielectronic recombination is similar for κ -distributions and Maxwellian distribution and it is different for different element and ions. The most affected are transition region ions.

Vocks & Mann 2003; Vocks et al. 2008).

> κ -distribution with κ =2-3 was diagnosed in the solar active region (*Del Zanna et al.,* 2022).

Maxwellian distribution (black line) and κ -distributions for $\kappa = 2$ (red), 3 (orange), 5 (green), and 10 (blue line).

KAPPA package

The authors acknowledge support from the Czech Science Foundation, grant GACR No. 22-07155S, as well as institutional support RVO:67985815 from the Czech Academy of Sciences. KAPPA package (*http:/kappa.asu.cas.cz*)
was developed to synthesise optically thin
line and continuum spectra for non-thermal
κ-distributions.

- KAPPA database contains the ionization and recombination rates together with new density dependent ionization equilibria for κ = (1.7; 33). Tools for calculation of synthetic line and continuum intensities are provided and described.
- KAPPA package is based on the freely available CHIANTI database and software. Latest version (*Dzifčáková et al. 2023, ApJS* 269, 45) corresponds to the latest CHIANTI database 10.1 and includes the software

improvements of CHIANTI 10.2 for the calculation of the synthetic spectra (*Del Zanna et al., 2021, ApJ, 909, 38*). Extended KAPPA database contains all atomic data necessary for the calculation of the synthetic spectra for k-distributions to reduce confusions when using different versions of CHIANTI.

Synthetic EIS spectrum calculated for the Maxwellian distribution (black line) and κ -distributions for $\kappa = 2$ (red) using KAPPA package. The ratio of intensity of Fe XI 180.40 Å line to Fe XII 195.12 Å line is the same for both distributions.