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The Sun’s differential rotation

» The Sun’s outer 30% is called convection zone
» The Sun’s convection zone is known to rotate differentially, i.e., the equator rotates faster (P =24 days)
whereas the poles rotate slower (P =35 days)

» This differential rotation is believed to play a crucial role in sustaining the Sun’s magnetic activity via ()-effect
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Thermal wind balance: Role of the latitudinal entropy gradient

Differential rotation
(observed)

» Internal angular velocity profile (differential rotation) of the Sun is precisely measured
by global helioseismology [e.g., Schou et al. 1998]

» The solar differential rotation does not follow the Taylor-Proudman’s theorem which S|

predicts constant rotation rates on cylinder
» To break the Taylor-Proudman’s constraint, latitudinal entropy difference is believed to

exist in the Sun’s convection zone
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» The estimate latitudinal entropy difference corresponds to a latitudinal temperature

difference of 44T (=T y5e—Teq) = 5-10 K [e.g., Miesch 2005], which is small and very
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Polar spiral flows == High-latitude inertial modes

Near the polar region of the Sun, spiraling flow patterns are observed
[Hathaway et al. 2013, Bogart et al. 2015]

Largely consist m = 1 component and have the velocity amplitude of 20

— 30m/s at the surface

Often (mis)interpreted as the giant convection cells from the deep interior

that transport the angular momentum equatorward [Hathaway et al. 2013,

e

Recently, Gizon et al. (2021) instead showed that these polar flows are

Hathaway & Upton 2021]

characterized by single frequency at all latitudes (once the spectrum is
normalized)

Indicating that they are global-scale modes of inertial oscillation (where the

restoring force is the Coriolis force)

We call them “high-latitude inertial modes”
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Growth rate 3[w]/2rm [nHz]

High-latitude inertial modes are baroclinically unstable

Bekki et al. (2022a) carried out a linear eigenmode analysis to show that the high-latitude modes become linearly unstable

when a latitudinal entropy gradient ds/06 exists, i.e., baroclinically unstable

The observed spiral pattern can be obtained only when a large |0s/0d8] is included

The dispersion relation of the baroclinically-unstable modes agree well with the observations

Linear eigenfrequency (m = 1)
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3D mean-field simulations of solar large-scale flows

» To study the amplitudes of the high-latitude inertial modes, we carry out a set of mean-field simulations of the solar large-scale
flows in a 3D spherical shell [Bekki & Cameron 2023, Bekki et al. 2024]

» Small-scale convection is NOT solved but parametrized and modelled (e.g., A-effect, turbulent diffusion)
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> Differential rotation and meridional circulation are driven by prescribed A—effect (following Rempel 2005’s 2D model)

» Base of the convection zone is assumed to be weakly subadiabatic (§ < 0) by which the latitudinal entropy gradient is generated
via the interaction with the meridional circulation [Rempel 2005]

» We vary the subadiabaticity at the base §,(< 0) as a free parameter which controls the baroclinicity



Nonlinear evolution of baroclinically-unstable modes

Weakly baroclinic Moderately baroclinic Strongly baroclinic Time = 43.81 [yr]
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Nonlinear saturation: Equatorward heat transport by modes

» We find that both amplitudes of baroclinic modes and AgT initially increase with increasing baroclinicity

» However, when the mode amplitudes exceed a threshold value, they start to give a significant negative feedback,
i.e., AgT decreases as baroclinic forcing increases and mode amplitudes increase

» This is because of the equatorward heat transport by baroclinic modes, which reduces AgT (nonlinear saturation)

» The observed mode amplitudes imply AgT ~ 7K in the middle convection zone (observational evidence of the thermal wind balance)
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Significant impact on differential rotation amplitudes

» In 2D axisymmetric model (where the baroclinic modes are excluded), latitudinal differential rotation amplitudes Ag{l can be

increased by changing the model parameters

» In realistic 3D model (where the non-axisymmetric modes play a role), Ag{Q is limited by baroclinically unstable modes

» The solar observation implies that the Sun’s differential rotation likely reaches its possible maximum value
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Role of baroclinicity on angular momentum balance
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» Reduction of Ay is dominantly caused by the poleward angular momentum flux by meridional flow F,

» This is caused by the change in the baroclinic torque == Equatorward heat transport by modes
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Various observed properties of high-latitude inertial modes explained

» Our 3D mean-field model with AgT = 7K nicely reproduces many observed properties of the high-latitude inertial modes
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Summary

Observation (SG tracking)

> Differential rotation of the Sun

- The non-Taylor-Proudman differential rotation is believed to be sustained by thermal wind balance

- Asmall latitudinal temperature difference 4,T (=T ,,.—T.,) is expected to exist in the Sun but difficult

pole

to measure

» High-latitude inertial modes (polar spiral flows) [
Courtesy:

- The high-latitude inertial modes have the largest velocity amplitudes [Gizon et al. 2021] D. Hathaway]

- They are baroclinically unstable even in the presence of such a small 4,T [Bekki et al. 2022] Mean-field sim.

» Nonlinear saturation of high-latitude modes [Bekki et al. 2024]

- The high-latitude modes saturate by transporting heat equatorward and reducing 4,T in CZ
- They control the latitudinal differential rotation by regulating the baroclinicity
- The observed amplitudes of baroclinic modes can be used to infer 4,7 = 7 K

- Our study implies that the Sun’s differential rotation is close to its maximum possible value




