Paving the way to SKA observations of galaxy clusters with pathfinder and precursor instruments

Andrea BOTTEON

INAF – IRA

November 28, 2023 - The fourth national workshop on the SKA project, Catania

 $M \simeq 10^{14} - 10^{15} \,\mathrm{M_{\odot}}$ $L \simeq 2 - 3 \,\mathrm{Mpc}$

Botteon+20,22

1 Mpc

Abell 2255

Optical:

100-1000s galaxiesMass: a few % of total

Lensing:

- Trace dark matter
- Mass: 80% of the total

 $M \simeq 10^{14} - 10^{15} \,\mathrm{M_{\odot}}$ $L \simeq 2 - 3 \,\mathrm{Mpc}$

Botteon+20,22

1 Mpc

Abell 2255

Optical:

100-1000s galaxiesMass: a few % of total

Lensing:

- Trace dark matter
- Mass: 80% of the total

X-rays:

- Intra-cluster medium (ICM)
- Hot (10⁷ 10⁸ K) and rarified (10⁻³ 10⁻⁴ cm⁻³)
- Thermal bremsstrahlung
- Mass: 15% of total

 $M \simeq 10^{14} - 10^{15} \,\mathrm{M_{\odot}}$ $L \simeq 2 - 3 \,\mathrm{Mpc}$

Botteon+20,22

1 Mpc

Abell 2255

Optical:

- 100-1000s galaxies
- Mass: a few % of total

Lensing:

- Trace dark matter
- Mass: 80% of the total

X-rays:

- Intra-cluster medium (ICM)
- Hot (10⁷ 10⁸ K) and rarified (10⁻³ 10⁻⁴ cm⁻³)
- Thermal bremsstrahlung
- Mass: 15% of total

Radio:

- Relativistic electrons (GeV) and magnetic fields (µG)
- Non-thermal synchrotron emission

 $M \simeq 10^{14} - 10^{15} \,\mathrm{M_{\odot}}$ $L \simeq 2 - 3 \,\mathrm{Mpc}$

Optical:

- 100-1000s galaxies
- Mass: a few % of total

Lensing:

- Trace dark matter
- Mass: 80% of the total

X-rays:

- Intra-cluster medium (ICM)
- Hot (10⁷ 10⁸ K) and rarified (10⁻³ 10⁻⁴ cm⁻³)
- Thermal bremsstrahlung
- Mass: 15% of total

Radio:

- Relativistic electrons (GeV) and magnetic fields (µG)
- Non-thermal synchrotron emission

Abell 2255

 $M \simeq 10^{14} - 10^{15} \,\mathrm{M_{\odot}}$ $L \simeq 2 - 3 \,\mathrm{Mpc}$

Optical:

- 100-1000s galaxies
- Mass: a few % of total

Lensing:

- Trace dark matter
- Mass: 80% of the total

X-rays:

- Intra-cluster medium (ICM)
- Hot (10⁷ 10⁸ K) and rarified (10⁻³ 10⁻⁴ cm⁻³)
- Thermal bremsstrahlung
- Mass: 15% of total

Radio:

- Relativistic electrons (GeV) and magnetic fields (µG)
- Non-thermal synchrotron emission

Botteon+20,22

1 Mpc

Abell 2255

Diffuse cluster sources

Radio halos:

- Cluster-scale, in the center
- Follow X-ray morphology
- Unpolarized
- Steep spectra (α ~1.2-1.3 but also α >1.5)

Radio relics:

- Cluster-scale, in the outskirts
- Elongated
- Polarized
- Steep spectra (α~1.0-1.3)
- Single and double relics

Radio mini-halos:

- 100-400 kpc in size, cluster centers
- Surround BCG
- Sharp surface brightness edges
- Steep spectra (α ~1.0-1.5 and steeper)

Diffuse cluster sources

Radio halos:

- Cluster-scale, in the center
- Follow X-ray morphology
- Unpolarized
- Steep spectra (α ~1.2-1.3 but also α >1.5)

Radio relics:

- Cluster-scale, in the outskirts
- Elongated
- Polarized
- Steep spectra (α~1.0-1.3)
- Single and double relics

Radio mini-halos:

- 100-400 kpc in size, cluster centers
- Surround BCG
- Sharp surface brightness edges
- Steep spectra (α ~1.0-1.5 and steeper)

Diffusion problem (e.g. Jafferr) $au_{
m diff}(\sim 10~
m Gyr) \gg au_{
m rad}(\sim 0.1~
m Gyr)$

Emitting particle must be generated "in situ"

Observational milestones:

- halos and relics are not ubiquitous in galaxy clusters
- clusters hosting *halos* and *relics* are merging systems

The generation of **giant** diffuse cluster sources is linked to the *formation process* (mass growth) of galaxy clusters

Observational milestones:

- halos and relics are not ubiquitous in galaxy clusters
- clusters hosting *halos* and *relics* are merging systems

The generation of **giant** diffuse cluster sources is linked to the *formation process* (mass growth) of galaxy clusters

Observational milestones:

- halos and relics are not ubiquitous in galaxy clusters
- clusters hosting *halos* and *relics* are merging systems

The generation of **giant** diffuse cluster sources is linked to the *formation process* (mass growth) of galaxy clusters

Shocks:

accelerate relativistic particles (Fermi I) CRe \rightarrow Radio relics CRp $\rightarrow \pi^0$ decay \rightarrow gamma-rays (not detected) $\rightarrow \pi^{\pm}$ decay \rightarrow secondary e[±]

Observational milestones:

- halos and relics are not ubiquitous in galaxy clusters
- clusters hosting *halos* and *relics* are merging systems

The generation of **giant** diffuse cluster sources is linked to the *formation process* (mass growth) of galaxy clusters

Shocks:

accelerate relativistic particles (Fermi I) CRe \rightarrow Radio relics CRp $\rightarrow \pi^0$ decay \rightarrow gamma-rays (not detected) $\rightarrow \pi^{\pm}$ decay \rightarrow secondary e[±]

Turbulence:

accelerate seed CRe & secondary e^{\pm} (Fermi II) \rightarrow Radio halos dynamo amplification of B

Observational milestones:

- halos and relics are not ubiquitous in galaxy clusters
- clusters hosting *halos* and *relics* are merging systems

The generation of **giant** diffuse cluster sources is linked to the *formation process* (mass growth) of galaxy clusters

Shocks:

accelerate relativistic particles (Fermi I) CRe \rightarrow Radio relics CRp $\rightarrow \pi^0$ decay \rightarrow gamma-rays (not detected) $\rightarrow \pi^{\pm}$ decay \rightarrow secondary e[±]

Turbulence:

accelerate seed CRe & secondary e^{\pm} (Fermi II) \rightarrow Radio halos dynamo amplification of B

Halos:

- ✓ Ultra steep spectrum radio halos (USSRH) (Brunetti+08)
- ✓ High-frequency spectral steepening (Thierbach+03)
- ✓ More common/powerful in massive clusters (Cassano+13)
- ✓ Pure hadronic models discarded (Brunetti+17)

What is the role of secondary electrons?
What are the composition and origin of seed particles?
How does turbulence cascade to particle-scale?

Relics:

- ✓ Co-location with (weak) shocks (Finoguenov+09)
- Head-on collisions generate double relics (Roettiger+97)
- Radial spectral steepening (aging) (vanWeeren+10)
- ✓ DSA of thermal electrons ruled out (Botteon+20)

³ What is the role of seed electrons?

- ³ What is the magnetic field strength in cluster outskirts?
- [?] Where are the CRp?

Origin of mini-halos

Observational milestones:

- mini-halos are not ubiquitous in galaxy clusters
- clusters hosting *mini-halos* are somehow relaxed systems

Mini-halos <u>are not</u> associated with energetic merging events! Need processes that can *preserve* the cool core

Origin of mini-halos

Observational milestones:

- mini-halos are not ubiquitous in galaxy clusters
- clusters hosting *mini-halos* are somehow relaxed systems

Mini-halos <u>are not</u> associated with energetic merging events! Need processes that can *preserve* the cool core

Origin of mini-halos

Observational milestones:

- mini-halos are not ubiquitous in galaxy clusters
- clusters hosting *mini-halos* are somehow relaxed systems

Mini-halos <u>are not</u> associated with energetic merging events! Need processes that can *preserve* the cool core

Mini-halos:

- ✓ Quite common in massive and cool-core clusters (Giacintucci+17)
- ✓ Connection with central AGN (Richard-Laferriere+20)
- ✓ Connection with sloshing cold fronts (Mazzotta+Giacintucci07)

What is the role of secondary electrons?
What is the source of turbulence? (AGN vs minor/off-axis merger)

SKA precursors and pathfinders

Precursors

Wide-area sky surveys

Wide-area sky surveys

Wide-area sky surveys

Large statistical samples

LOFAR LoTSS-DR2, 5634 deg², 309 PSZ2 clusters (Botteon+22)

Large statistical samples

LOFAR LoTSS-DR2, 5634 deg², 309 PSZ2 clusters (Botteon+22)

ASKAP EMU, 1990 deg², 71 PSZ2 clusters (Duchesne+ sub.)

Large statistical samples

LOFAR LoTSS-DR2, 5634 deg², 309 PSZ2 clusters (Botteon+22)

ASKAP EMU, 1990 deg², 71 PSZ2 clusters (Duchesne+ sub.)

This work

PSZ2

0.8

Planck provides a *mass-selected* cluster sample

Previous studies

Statistical analysis of PSZ2 galaxy clusters exploring new ranges of redshift and mass

Highlights

LoTSS-DR2 (Botteon+22): 83 halos, 26 relics EMU (Duchesne+ sub.): 21 halos, 11 relics

About *half* are **new**

Highlights

LoTSS-DR2 (Botteon+22): 83 halos, 26 relics EMU (Duchesne+ sub.): 21 halos, 11 relics

All LoTSS+EMU: ~500 halos, ~160 relics

About *half* are **new**

 \checkmark

Highlights

LoTSS-DR2 (Botteon+22): 83 halos, 26 relics EMU (Duchesne+ sub.): 21 halos, 11 relics

All LoTSS+EMU: ~500 halos, ~160 relics

About *half* are **new**

- This paper Cuciti+ 2021 RH this paper UL this paper 10^{2} RH Cuciti+2021 UL Cuciti+2021 P_{150MHz} [W/Hz] 10^{23} 10^{24} 10^{2} 2×10^{14} 3×10^{14} 4×10^{14} 6×10^{14} 10^{15} $M_{500} [M_{\odot}]$ Cuciti+23
- Number, flux density, and z distribution of halos OK with turbulent re-acceleration models
- Ongoing: tests on spectral properties using *LoLSS, uGMRT,* and *MeerKAT*

- P-M relation at *low*-frequency
- *Wider* range of mass probed
- Scatter related to cluster disturbance

an *uncharted* territory

acceleration models

10

Fast magnetic field amplification in *distant* galaxy clusters

Fast magnetic field amplification in *distant* galaxy clusters

? How low can we go in mass?? How far can we go in redshift?

We can now recover extended emission at high resolution

Halos were generally described as **smooth** sources with **regular** morphology (Feretti+12, vanWeeren+19)

 \rightarrow <u>not</u> true anymore

We can now recover extended emission at high resolution

Halos were generally described as **smooth** sources with **regular** morphology (Feretti+12, vanWeeren+19)

 \rightarrow <u>not</u> true anymore

We can now recover extended emission at high resolution

Halos are actually rich of substructure, including prominent surface brightness edges and filamentary structures

We can now recover extended emission at high resolution

³ What is their connection with particle acceleration and magnetic field amplification mechanisms?

Mini(?) halos

Confinement of **mini-halos** in sloshing *cold fronts*

VLA/GMRT 617 MHz

(b)

Mini(?) halos

Giacintucci+14

Gi@cintucci+19

100 kpc

Confinement of mini-halos in sloshing cold fronts

Some mini-halos are surrounded by steep spectrum emission

Two components with different origin?
Low levels of turbulence outside the central region?

Re-defining giant & mini halos? **Mini-halos Giant halos**

Mini-halos

Giant halos

Mini-halos

The prototypical "mini" halo is ~1 Mpc in size

Giant halos

"Giant" halos in low-mass clusters are ~500 kpc in size

Mini-halos

The prototypical "mini" halo is ~1 Mpc in size

Giant halos

"Giant" halos in low-mass clusters are -500 kpc in size

Halos.

Mini-halos

The prototypical "mini" halo is ~1 Mpc in size

Giant halos

"Giant" halos in low-mass clusters are **~500 kpc** in size

Halos.

@ galaxies

Lawrence Rudnick 💷

Radio Galaxy Classification: #Tags, Not Boxes

Instead of trying to place them into "boxes", we should assign them #tags, a system that is easy to understand and apply, that is flexible and evolving, and that can accommodate conflicting ideas with respect to what is relevant and important.

AGN/ICM interaction (seeding)

Complex interactions between *non-thermal components* and *ICM motions* \rightarrow transport of seeds and B

Beyond clusters

• **Relics** are found in the cluster *outskirts*

(vanWeeren+10, Bagchi+11, Bonafede+14,22, Hoang+21, Riseley+22, Jones+23)

Halos have extensions of 2 Mpc and beyond

(Shweta+20, Hoang+21, Rajpurohit+21a,21b,22, Botteon+22, Cuciti+22, Knowles+22 Bruno+23)

Beyond clusters

Beyond clusters

What about diffuse emission outside clusters?

Radio bridges

Radio bridges are 2-3 Mpc long synchrotron sources connecting *pairs* of galaxy clusters

? Are bridges common in cluster pairs?
? What are the properties of the emission?
? What are the particle acceleration mechanisms?

Very active research field (Wittor+19, Brunetti+Vazza20, de Jong+22, Radiconi+22, Nunhokee+23, Balboni+23, Pignataro+23)

Radio bridges

Radio bridges are 2-3 Mpc long synchrotron sources connecting *pairs* of galaxy clusters

? Are bridges common in cluster pairs?
? What are the properties of the emission?
? What are the particle acceleration mechanisms?

Very active research field (Wittor+19, Brunetti+Vazza20, de Jong+22, Radiconi+22, Nunhokee+23, Balboni+23, Pignataro+23)

Other diffuse emission in-between clusters:

Cosmic web

How did the Universe become magnetic?
Where and when did it originate, and how has cosmic magnetism evolved?

Radio emission from the *cosmic web* is beyond reach of *current* instruments → stacking

Cosmic web

How did the Universe become magnetic?
Where and when did it originate, and how has cosmic magnetism evolved?

Radio emission from the *cosmic web* is beyond reach of *current* instruments → stacking

390k pairs of LRG (MWA, LWA, ROSAT)

- α ~ 1
- 30 nG < B < 60 nG

But see Hodgson+22

106 paired clusters (LOFAR, eROSITA)

- $\mathcal{E} < 1.2 \times 10^{44} \text{ erg/s/cm}^3/\text{Hz}$
- B < 75 nG

612k pairs of LRG+clusters (GMIMS, Planck)

- Polarization fraction >20%
- Shock origin

- Diffuse radio sources *inside* and *outside* clusters probe *non-thermal* phenomena on very large-scales
- CRs acceleration and B amplification in unique environments

- Diffuse radio sources *inside* and *outside* clusters probe *non-thermal* phenomena on very large-scales
- CRs acceleration and B amplification in unique environments
- ASKAP, MWA, MeerKAT, LOFAR are revolutionizing this field
- Important advances have been achieved
- Many open questions still remain

- Diffuse radio sources *inside* and *outside* clusters probe *non-thermal* phenomena on very large-scales
- CRs acceleration and B amplification in unique environments
- ASKAP, MWA, MeerKAT, LOFAR are revolutionizing this field
- Important advances have been achieved
- Many open questions still remain
- SKA will allow:
 - Statistical studies in uncharted regimes
 - Investigation of the *magnetic field properties* in the ICM/IGM
 - Efficient study of non-phenomena outside clusters

- Diffuse radio sources *inside* and *outside* clusters probe *non-thermal* phenomena on very large-scales
- CRs acceleration and B amplification in unique environments
- ASKAP, MWA, MeerKAT, LOFAR are revolutionizing this field
- Important advances have been achieved
- Many open questions still remain
- SKA will allow:
 - Statistical studies in *uncharted regimes*
 - Investigation of the magnetic field properties in the ICM/IGM
 - Efficient study of non-phenomena *outside* clusters

