
Observations with the SKA-low prototype station AAVS2: the INAF contribution towards science commissioning The 4th National Workshop on the SKA Project

2023/11/27 - 12/1, Catania

Giulia Macario - INAF Arcetri Astrophysical Observatory

INAF AAVS observations team

Main roles (inside the team)

G. Macario, G. Pupillo, G. Bernardi, G. Comoretto:

observing plans, data acquisition, processing, analysis and interpretation, science commissioning

P. Bolli, P. Di Ninni:

antenna and station EM simulations

J. Monari, F. Perini, A. Mattana, M. Schiaffino: support on receivers/signal chain, data acquisition and station monitoring

INAF OA Arcetri

G. Macario P. Di Ninni P. Bolli G. Comoretto

INAF IRA Bologna and Medicina

G. Bernardi

G. Pupillo

J. Monari A. Mattana M.Schiaffino

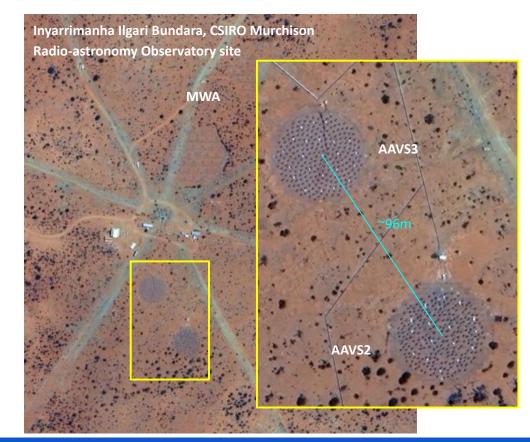
In collaboration with: M. Sokolowski, R. Wayth, R. Subramanhyan (ICRAR Curtin); S. Asayama, R. Laing (SKAO)

Aperture Array Verification Systems (AAVS's)

History of AAVS's (see Monari's talk)

Now: 2 *full*-size stations of 256 SKALA4.1al

- AAVS2 (pseudo-random)


2019-2024

- AAVS3 (Vogel)

Nov 2023 - March 2024

<u>Purpose</u>: station validation in preparation to **Array Assembly (AA) 0.5**: first 6 SKA-Low Stations under construction, expected 2024.

 \rightarrow start of SKA-Low science commissioning

AAVS2

Operational at MRO since Dec. 2019

 \rightarrow Frequency coverage: 50-350 MHz

 \rightarrow FoV ~ 90°

 \rightarrow Angular resolution: ~9° - 1.3° (50 -- 350 MHz)

<u>Van Es + 2020</u>, <u>Macario+ 2022</u>, <u>Perini+ 2022</u>, <u>Bolli + 2020</u>

20

10

-10

-20

-20

Y (m)

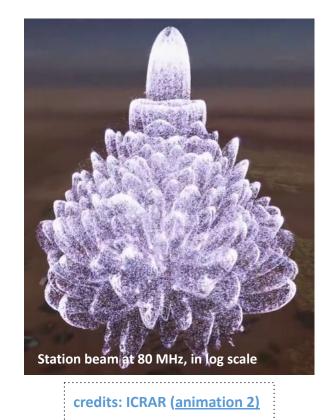
Ν

X (m)

pseudo-random

38m diameter

close-packed


256 **SKALA4.1al** log periodic - 2 pol. 1.6m x 2.1; 10kg reference design for SKA-Low

AAVS2 antenna and station beam patterns

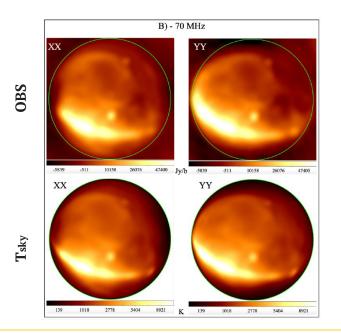
credits: ICRAR (animation 1) Mutual coupling effects \rightarrow Embedded Element Patterns (EEPs) more pronounced at low frequencies

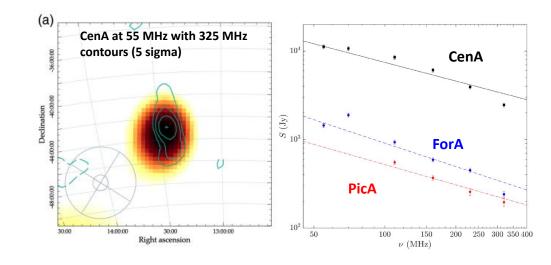
SKA-Low sensitivity and polarization performance addressed by EM modelling (e.g. *Bolli, Davidson + 2022*)

Observing with AAVS2 as a transit interferometer

- Period: 4/2020 2/2021 (quiet Sun)
- zenith pointed snapshots
- every 5', across 22-24 h \rightarrow ~**300** snapshots/obs.
- 6 coarse channels of ~ 1 MHz
- two consecutive integrations of 0.14 s, separated by 0.14 s (for *difference imaging*)

ν_c	Start time, UT
(MHz)	(yyyy/mm/dd, hh:mm:ss)
54.7	2021/02/19, 03 : 03 : 01
70.3	2020/04/17, 08 : 59 : 25
110.2	2020/04/21, 10 : 19 : 31
159. <mark>4</mark>	2020/04/07, 16 : 26 : 58
229.8	2020/04/19, 03 : 52 : 11
320.3	2020/04/22, 11:09:11

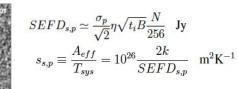

- Simple **Sun-based calibration**: use only **Sun** (at transit), assuming average EEPs
- all-sky XX, YY and Stokes images *mainly* aimed at verifying:
 - → Sensitivity performance Macario+ 2022
- → Polarization performance Macario+ 2023 (submitted to PASA)


Calibration and imaging (Macario+ 2022, JATIS)

SPECIAL SECTION ON THE SKA OBSERVATORY

5 January 2022

Characterization of the SKA1-Low prototype station Aperture Array Verification System 2



1. Sun based calibration efficient (>70 MHz) Good agreement with brightness T_{sky} maps (extrapolated from GSM), at all frequencies

2. Flux scales are consistent *A-team* sources integrated spectra agree with expected power-laws from literature

Sensitivity (Macario+ 2022)

Difference images - noise - SEFD - A/T

19 20

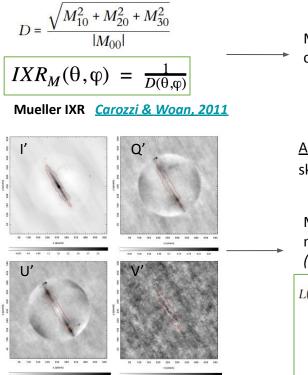
x 512

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

160 MHz, YY (all ~300 snapshots)

3. First ever observational validation of SKA-Low sensitivity across its bandwidth

- good agreement with simulation (≤13%)
- meet SKA-Low req. at all frequencies (up to ~2.3 higher)


SSKAYY (m² K⁻¹)

200

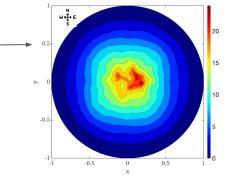
Polarization performance (Macario+ 2023, sub.): IXR

Intrinsic cross polarization ratio (IXR) \rightarrow measures the *polarization purity* of the system

Instrum. pol. leakage

Mueller matrix elements at each (θ , φ) computed from **EM simulations**

see e.g. Bolli, Davidson +, 2022

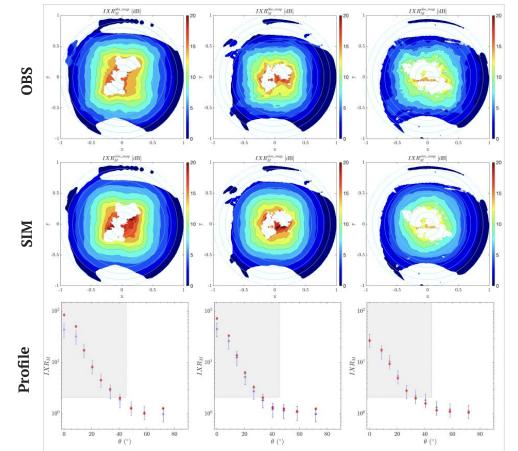

<u>Assumption</u>:

sky emission is largely unpolarised

Mueller matrix elements at each (θ, φ) measured from **observations** (Stokes all-sky images)

$$\begin{split} L(\theta, \phi) &= \frac{|M_{00}(\theta, \phi)|}{\sqrt{M_{10}^2(\theta, \phi) + M_{20}^2(\theta, \phi) + M_{30}^2(\theta, \phi)}} = \\ &= \frac{|I'(\theta, \phi)|}{\sqrt{Q'^2(\theta, \phi) + U'^2(\theta, \phi) + V'^2(\theta, \phi)}} = \\ &= IXR_M(\theta, \phi) \,. \end{split}$$

Simulated IXR map (160 MHz, dB)



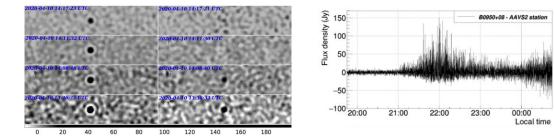
Novel IXR mapping algorithm:

uses the Galactic Plane I, Q, U, V
emission (> 5 sigma) as IXR *tracer*compute and reconstruct all-sky
observed IXR maps comparable
with simulated maps

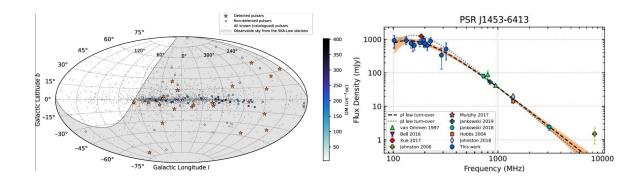
G. Macario (INAF-OAA)

Polarization performance (Macario+ 2023, sub.): results

3. First observational verification of SKA-Low station IXR (polarization performance)


- very good morphological agreement between observed and simulated IXR maps
- good consistency of IXR values in radial profiles
- SKA-Low IXR requirement* satisfied

*at least 12 dB over the whole observing band within the HPBW up to observing angles of 45°


G. Macario (INAF-OAA)

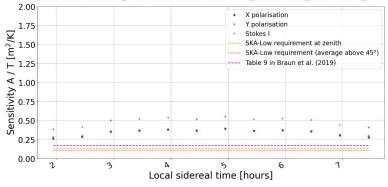
Highlights of scientific results with AAVS2

- Southern Hemisphere real-time all-sky imager and transient monitoring (<u>Sokolowski et al. 21</u>)

22 pulsars detections and spectral analysis (<u>Lee + 22</u>)

SKA-Low sensitivity online calculator (Sokolowski+22)

http://skalowsensitivitybackup-env.eba-daehsrjt.ap-southeast-2.elasticbeanstalk.com/


Database of pre-computed sensitivity values

(10 MHz steps in 50-350 MHz, 1/2 hour LST intervals, and 5 degree pointing direction resolution)

- 1. Station A/T vs frequency (at specified RA/DEC or Az/El)
- 2. Station A/T vs LST (at specified RA/DEC or Az/El)
- 3. Station all-sky sensitivity maps
- 4. Telescope Imaging sensitivity (for your "favourite" source) (choice on: n of stations, bw, int time, frequency and tracking time)

My favourite source SKA-Low (512 stations)

Frequency 55.00 MHz, (RA,Dec) = (73.53°, -10.24°) for AAVS2 Expected 6.0000 [hours] image noise for X/Y/Stokes I is 20.000212 [uJy] , 19.442398 [uJy] , 13.946621 [uJy]

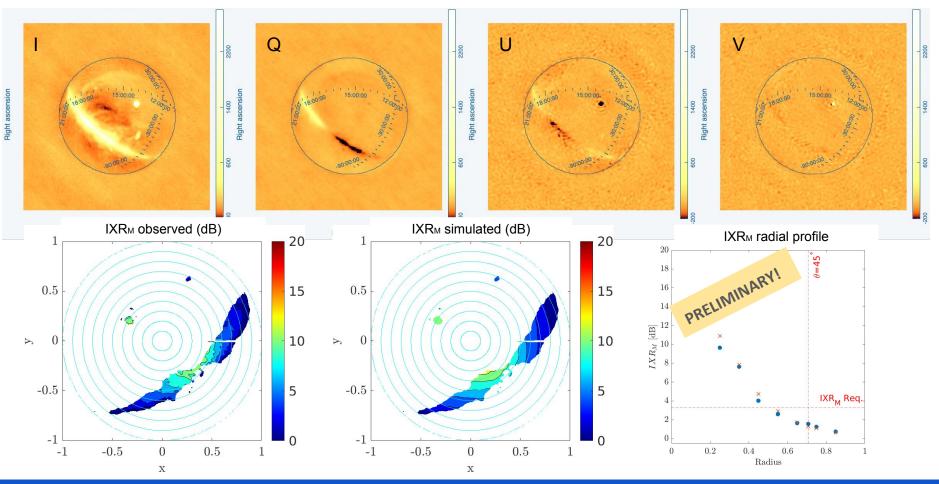


Imaging Sensitivity of the SKA-Low Telescope

This caption enables the accluation of the sensitivity of the 154-low telescope (default mumber of tations is 152) in the specific pointing direction (right accession and defaultation), during the time range of the backerotions (backerotic) accession of additional direction (right accession), the calculated result is the standard deviation (marging sensitivity) of the mean image resulting from averaging multiples enaptive images of the specified integration time. The option also show how the sensitivity (AT) changes a a function of the during the specified abserving bankero intervention.

My favourite source AA0.5 (6 stations)

Warnings: Only the thermal noise (no confusion, no ionospheric effects), uv-coverage, calibration and imaging choices not included


AAVS3 commissioning: the INAF observing team involvement

Array calibration, Imaging, sensitivity, IXR

Commissioning plan: Dec 2023- March 2024

Test	Objective and key results	Station layout		Test	Objective and key results	Station layout
Calibration using sky model (Sun + Galaxy + point sources) + EEPs	gains vs tredilency	AAVS2 and AAVS3 (simultaneous tests)		All Sky imaging for 24h	all-sky images using CASA or MIRIAD	AAVS2 and AAVS3 (simultaneous tests)
Flux Calibration	Establish calibration procedures	AAVS3 (simultaneous tests with AAVS2 is preferable)		System sensitivity	Station SEFD verification with the GSM and EEPs Imaging sensitivity for 3C444 (TBC) and A/T vs. time	AAVS3
Gain and bandpass calibration with Sun	Establish calibration procedures with CASA or MIRIAD.	AAVS2 and AAVS3 (simultaneous tests)		IXR measurements	Establish IXR analysis procedures	AAVS3

AAVS3 first light: 15' correlated data (27/10/23) - 160 MHz - Polarization images (Sun based calibration)

G. Macario (INAF-OAA)

The 4th National Workshop on the SKA Project, 28/11/2023, Catania 14/15

Summary and future work

Main results so far:

- SKA-Low sensitivity and polarization performance <u>addressed</u> by <u>EM</u> simulations
- SKA-Low sensitivity <u>validated</u> through AAVS2 <u>observations</u>,
- SKA-Low <u>sensitivity calculator</u> online
- AAVS2 **polarization** response *initially* <u>verified</u> through <u>IXR</u> <u>observed</u> <u>maps</u>

<u>Next</u>: keep exploiting and growing the **INAF team expertise** towards the *next phases* of SKA-Low construction

- AAVS2/AAVS3: commissioning plan tasks (cal. & imaging, sensitivity, IXR)
- AA0.5 first observations upcoming (under construction, expected 2024)

 \rightarrow getting ready for SKA-low science commissioning!

SKA Phase1 construction Proposal

Key project milestone	Identifier	LOW Telescope	
Start of construction	то	1 st July 2021	
Earliest start of major contracts	со	August 2021	
Array Assembly 0.5 finish	AA0.5	February 2024	
Array Assembly 1 finish	AA1	February 2025	
Array Assembly 2 finish	AA2	February 2026	
Array Assembly 3 finish	AA3	January 2027	
Array Assembly 4 finish	AA4	November 2027	
Operations Readiness Review	ORR	January 2028	
End of Construction		July 2029	

- Observation calibration demonstrated
- Imaging validated by comparison with results from MWA
- Data reduction expected to be offline

Contact: giulia.macario@inaf.it