Late-time cosmology with the SKA Observatory

and other

Marta Spinelli *Observatoire de la Côte d'Azur*

UNIVERSITY of the WESTERN CAPE

28 November 2023 - 4th SKA Italy - Catania

SKA Cosmology Science Working Group

https://www.skao.int/en/science-users/science-working-groups/104/cosmology

Co-chairs: Stefano Camera & MS

Continuum

italian contribution (*e.g.*): S. Camera, A. Raccanelli, M. Migliaccio, G. Picirilli

FG leads: C. Hale & D. Parkinson

Angular clustering of radio sources - look at projected large-scale structures lots of systematics in radio data: source finder measurement/detection errors, sensitivity variations, etc.

Large area dipole, ISW, fNL, cross-corr, auto-corr **Small area** Bias evolution models for different source types

Continuum

FG leads: C. Hale & D. Parkinson

italian contribution (*e.g.*): S. Camera, A. Raccanelli, M. Migliaccio, G. Picirilli

Angular clustering of radio sources - look at projected large-scale structures lots of systematics in radio data: source finder measurement/detection errors, sensitivity variations, etc.

Large area dipole, ISW, fNL, cross-corr, auto-corr

all

40

Small area Bias evolution models for different source types

NVSS and TGSS

- Angular clustering Dolfi et al. (2019)
- NVSS x CMB lensing Planck Collaboration XVII 2014
- TGSS x CMB lensing Piccirilli et al. (2023)

LoTSS DR2

- Angular clustering of radio sources Hale et al. (2023)
- cross-corr with CMB lensing (27 σ detection and σ 8) Nakoneczny et al (2023)
- cross-with eBOSS Zheng et al. (in prep)

Continuum

FG leads: C. Hale & D. Parkinson

SKA-Mid in Band1 (350 MHz -1.05 GHz) - 20.000 deg2: *Wide* **SKA-Mid** in Band2 (950 MHz - 1.75 GHz) - 5.000 deg2: *Medium-deep*

access to dark sector equation of state w0-wa

source population bias marginalised over: constraint will improve with better knowledge on the bias parameters

Radio weak lensing

FG lead: I. Harrison

Wittman et al. (2020)

probe of growth of cosmic structures Dark matter & Dark energy

key observable in many current and future large optical/near-IR surveys

Requires shape measurement of ~billions of high redshift (z~1) galaxies

3.6σ detection in archival VLA FIRST Chang, Refregier & Helfand (2004)

Unsuccessful measurements in too-noisy data (VLA + MERLIN) Patel et al. (2010), Harrison et al. (2020)

Successful detections of radio-optical correlations (VLA + HST) e.g. Hiller et al. (2019)

italian contribution (e.g.): S. Camera

Radio weak lensing

FG lead: I. Harrison

SKAO SWG forecast assuming: 5,000 deg2 survey with **SKA-Mid** Band 2 (950 MHz - 1.75 GHz) at 1 arcsec PSF

SKAO alone competitive with completed Dark Energy Survey (DES)

cross-correlation retains almost all of the statistical power of individual experiments

systematic errors on the measured weak lensing signal **uncorrelated** between the radio and the optical

caveat: radio shear measurement methods need improvements

italian contribution (*e.g.*): G. De Lucia, F. Lelli, L. Xie, MS, A. Zoldan

FG leads: G. De Lucia & A. Ponomareva

Simulations: e.g. GAEA Semi-analytic model De Lucia et al. (2014), Xie et al. (2018), Zoldan et al. (2018)

light-cone construction: essential also for cross-correlation studies with **galaxy surveys** (e.g. Euclid)

italian contribution (*e.g.*): G. De Lucia, F. Lelli, L. Xie, MS, A. Zoldan

FG leads: G. De Lucia & A. Ponomareva

Simulations: e.g. GAEA Semi-analytic model De Lucia et al. (2014), Xie et al. (2018), Zoldan et al. (2018)

light-cone construction: essential also for cross-correlation studies with **galaxy surveys (e.g. Euclid)**

italian contribution (*e.g.*): G. De Lucia, F. Lelli, L. Xie, MS, A. Zoldan

italian contribution (*e.g.*): G. De Lucia, F. Lelli, L. Xie, MS, A. Zoldan

Marta SPINELLI - Observatoire de la Côte d'Azur

SKA Red Book (2020)

8

Intensity Mapping

FG leads: J. Wang & L. Wolz

costly to resolve each HI galaxy and limited to local Universe

How can we efficiently observe cosmological volumes?

Intensity Mapping: total intensity of the 21cm emission line in a large pixel (low spatial resolution)

M. Berti, G. Bernardi, S. Camera, I. Carucci, MS, M. Viel each HI galaxy

italian contribution (*e.g.*): M. Barberi-Squarotti,

Intensity Mapping

FG leads: J. Wang & L. Wolz

costly to resolve each HI galaxy and limited to local Universe

How can we efficiently observe cosmological volumes?

Intensity Mapping: total intensity of the 21cm emission line in a **large pixel** (low spatial resolution)

italian contribution (*e.g.*): M. Barberi-Squarotti,

I. Carucci, MS, M. Viel

M. Berti, G. Bernardi, S. Camera,

Intensity Mapping

italian contribution (*e.g.*): M. Barberi-Squarotti, M. Berti, G. Bernardi, S. Camera, I. Carucci, MS, M. Viel

costly to resolve each HI galaxy and limited to local Universe

How can we efficiently observe cosmological volumes?

one-to-one correspondence frequency-redshift high spectral resolution (tomography)

Key cosmological probe

Marta SPINELLI - Observatoire de la Côte d'Azur

Berti, MS, Viel (2023)b

SKAO forecasts: cross-correlation

SKAOxEuclid and **SKAOxDESI** comparable constraining power

Broader constraints assuming no knowledge on e.g. HI bias (nuisances)

Synergies with other surveys to measure non-Gaussianity and modified gravity e.g. Pourtsidou et al. (2016), Ballardini et al. (2018, 2019), Casas et al. (2023), Scelfo et al. (2023)

Foreground subtraction challenge

(subset) of the SKA Cosmo IM Focus Group

Project setup:

- various foreground models and realistic HI maps
- instrumental modeling MeerKAT-like and SKAO-like
- 9 different foreground removal methods (PCA, FastICA, ...)

Blind challenge to discover weaknesses and strengths of the various methods

Isabella Paola Carucci, Steve Cunnington, Ze Fonseca, Stuart Harper, Mel Irfan, Alkistis Pourtsidou, Marta Spinelli, Laura Wolz

given IM "data", would your favorite method extract the cosmological signal?

Foreground subtraction challenge

- How much can instrument/foregrounds coupling impact the signal reconstruction?
- definition of statistics and metrics to evaluate the relative performances

Realistic instrumental effects inevitably complicate the foreground cleaning

Intensity Mapping with MeerKAT

Santos et al. 2017, Wang et al. 2021

Antennas	All 64 MeerKAT dishes
Observation mode	Single-dish
Frequency range	0.856-1.712 GHz
Frequency resolution	$0.2 \mathrm{MHz}$
Time resolution	2s
Exposure time	$1.5hr \ge 7 scans$
Target field	WiggleZ 11hr field $(10^{\circ} \times 30^{\circ})$

Marta SPINELLI - Observatoire de la Côte d'Azur

MeerKAT observations

MeerKLASS: 64 MeerKAT antennas used in single-dish mode *PI: M. G. Santos (Santos et al. 2017)*

first successful calibration of intensity mapping data from MeerKAT
L-band: 850-1700 MHz (4096 channels)

MeerKLASS observations

Cunnington et al. 2022

Marta SPINELLI - Observatoire de la Côte d'Azur

MeerKLASS results

Blake et al. 2011 **11-hr region**

Marta SPINELLI - Observatoire de la Côte d'Azur

0.02

MeerKLASS results

Marta SPINELLI - Observatoire de la Côte d'Azur

MeerKLASS results

Marta SPINELLI - Observatoire de la Côte d'Azur

MeerKLASS ongoing

MeerKLASS ongoing

L-band: split data to reduce systematics cross-correlating Improved cleaning/comparison on 2019 L-band data (**Carucci** et al. *in prep*) different blocks (Barberi-Squarotti) - 3.5 L-band: 41x1.5h scans 3.4 -20° Dec (J2000) 3.3 Kelvin 3.2 -3.2 UHF-band: 50x1.5h scans preliminary -3.1 - 3.0 -30° New calibration pipeline(s): 0^h00^m 23^h00^m 22^h00ⁿ Wang et al. in prep

KATcali: improved RFI flagging, improved sky model with self-calibration (Wang et al. *in prep*)

Ivory/MuSEEK: new improved modular plugin-based architecture

(Wild et al. *in prep*)

MeerKLASS ongoing

Improved cleaning/comparison on 2019 L-band data (**Carucci** et al. *in prep*)

L-band: 41x1.5h scans

UHF-band: 50x1.5h scans

L-band: split data to reduce systematics cross-correlating different blocks (Barberi-Squarotti)

New calibration pipeline(s):

KATcali: improved RFI flagging, improved sky model with self-calibration (Wang et al. *in prep*) Ivory/MuSEEK: new improved modular plugin-based architecture (Wild et al. *in prep*)

easily adaptable to SKA

On-the-fly (OTF) interferometry commensal IM and interferometric imaging (no dedicated OTF obs mode on MeerKAT but engineering & commissioning team involved) Rozgonyi et al. *in prep*

Marta SPINELLI - Observatoire de la Côte d'Azur

End-to-end Simulations

Marta SPINELLI - Observatoire de la Côte d'Azur

