LOFAR & the pathway to the SKA-Low The Contribution of the Italian community

OUTLINE

1) LOFAR : Intro & Science with LOFAR

2) The impact on the IT community

3) What's next step ?

THE LOW FREQUENCY ARray

Giant digital aperture array radio telescope opening up a new window in the electromagnetic spectum at low radio frequencies

(van Haarlem + 2013)

10 Countries (24+14) + 14(16) stations

THE LOW FREQUENCY ARray

Giant digital aperture array radio telescope opening up a new window in the electromagnetic spectum at low radio frequencies - The largest (area & dataflow) pathfinder toward the SKA(low) -

(van Haarlem + 2013)

- ✓ 250 Gb/s across the entire network
- Large FoV, n baselines, n channels, produce typical TB-size datasets
- ✓ Archiving problem and managing Big Data

🔵 poznan 🌘 juelich 🥚 sara

THE LOW FREQUENCY ARray

Giant digital aperture array radio telescope opening up a new window in the electromagnetic spectum at low radio frequencies - The largest (area & dataflow) pathfinder toward the SKA(low) -

THE LOFAR SURVEYS

LOFAR Surveys of the entire northern sky are opening a new observational window of the Universe

- 10-100x better sensitivity
- 10x better spatial resolution (100x using international baselines)

THE LOFAR SURVEYS

THE LOFAR SURVEYS

1 degree

ELAIS-N1 (< 20 µJy/beam) (Sabater+ 2021; Tasse+ 2021)

1 degree

ELAIS-N1 (< 20 µJy/beam) (Sabater+ 2021; Tasse+ 2021)

15 arcmin

ELAIS-N1 (< 20 µJy/beam) (Sabater+ 2021; Tasse+ 2021)

.

15 arcmin

ELAIS-N1 (< 20 µJy/beam) (Sabater+ 2021; Tasse+ 2021)

.

ELAIS-N1 (< 20 µJy/beam) (Sabater+ 2021; Tasse+ 2021)

Next: Deeper field (550hrs on ELAIS-N1)

Around 10-12 µJy/beam rms at 6" resolution. Final images produced but not yet fully released.

LoTSS Deep Fields - ELAIS-N1

de Jong+

North Ecliptic Pole (synergy with JWST)

Computationally expensive !!

OUTLINE

- 1) LOFAR : Intro & Science with LOFAR
- 2) The impact on the IT community
- 3) What's next step ?

Courtesy of J. Dempsey

PHYSICAL SCIENCES

Gentle reenergization of electrons in merging galaxy clusters

Francesco de Gasperin,^{1,2}* Huib T. Intema,¹ Timothy W. Shimwell,¹ Gianfranco Brunetti,³ Marcus Brüggen,² Torsten A. Enßlin,⁴ Reinout J. van Weeren,^{1,5} Annalisa Bonafede,^{2,3} Huub J. A. Röttgering¹

Evidence for gentle particle reacceleration in astrophysical jets from supermassive BH : new (astro-)physics ??

BH activity & their impact

Oldest AGN feedback phases (Brienza+ 21)

RADIO ASTRONOMY

RADIO EMISSION BEYOND GALAXY CLUSTERS

RADIO OBSERVATIONS PROBE THF DISSIPATION OF DM-DRIVEN KINFTIC FNFRGY IN NON-THFRMAL COMPONENTS IN THE LSS : □ PARTICLE ACCELERATION AND □ MAGNETIC FIELD AMPLIFICATION

Govoni et al 2019 A radio ridge connecting two galaxy clusters in a filament of the cosmic web

10.6

2nd ORDER FERMI MECHANISMS ACCELERATE **ELECTRONS IN** THE LSS ? **NEW PHYSICS ?**

Brunetti+Vazza 2020 PRL

SCIENCE ADVANCES | RESEARCH ARTICLE

ASTRONOMY

Magnetic fields and relativistic electrons fill entire galaxy cluster

Cuciti+ 22

Galaxy clusters enveloped by vast volumes of relativistic electrons

https://doi.org/10.1038/s41586-022-05149-3 Received: 23 February 2022

Article

V. Cucitl¹²¹², F. de Gasperin¹², M. Brüggen¹, F. Vazza¹³, G. Brunettl¹, T. W. Shimwell⁴, H. W. Edler¹, R. J. van Weeren⁵, A. Botteon^{23,5}, R. Cassano², G. Di Gennaro¹, F. Gastaldello⁶, A. Drabent⁷, H. J. A. Röttgering⁶ & C. Tasse^{1,0}

Andrea Botteon^{1,2,3}*, Reinout J. van Weeren¹, Gianfranco Brunetti³, Franco Vazza^{2,3}, Timothy W. Shimwell^{1,4}, Marcus Brüggen⁵, Huub J. A. Röttgering¹, Francesco de Gasperin^{3,5}, Hiroki Akamatsu⁶, Annalisa Bonafede^{2,3}, Rossella Cassano³, Virginia Cuciti^{3,5}, Daniele Dallacasa^{2,3}, Gabriella Di Gennaro⁵, Fabio Gastaldello⁷

MAGNETIC FIELDS IN THE LSS

Constraints on magnetic fields in Cosmic Filaments

Evolution of magnetic fields in distant clusters & ICM microphysics

OUTLINE

- 1) LOFAR : Intro & Science with LOFAR
- 2) The impact on the IT community
- 3) What's next step?

LOFAR 2.0 upgrade (2025+...)

Upgrade :

- electronics
- correlator

will bring LOFAR into a new regime entering an uncharted territory at the very low frequencies (10-60 MHz)

NEW ELECTRONICS

RCU

LOFAR 2.0 upgrade (2025+...)

 PIs/coPIs of the largest LOFAR 2 surveys: data flux in IT will increase X4

- Use of long baselines to avoid confusion limit: critical for computing
- Unique synergies with EUCLID and LSST and MeerKAT in 2024-30

- Strong case for BIG data in IT
- Strong case for proto-SRC

Upgrade :

- electronics
- correlator

will bring LOFAR into a new regime entering an uncharted territory at the very low frequencies (10-60 MHz)

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

TAKE HOME

LOFAR is the largest SKA-low pathfinder
Among the most productive astronomical infrastructures
Top science: entering new parameter space in several fields

 The IT community is among the most active with clear leadership in a number of fields
Important technological contribution for LOFAR 2

LOFAR/LOFAR 2

- second ERIC in EU radioastronomy (n.2 in INAF ..)
- will pave the way for SKA-low .. 2028-30
- will be a unique telescope also in the SKA era :
 - $\circ\,$ due to the long baselines
 - $\circ~$ due to the window at very low frequencies

LOFAR-It: Management & Organization

LOFAR-It: Management & Organization

LOFAR-It: Management & Organization

LOFAR 2.0 upgrade (2025+...)

MD/ND

Upgrade :

- electronics
- correlator

High resolution (LONG baselines) will allow reaching extreme sensitivities with HBA in selected areas (1000+ hrs pointings)

95.76

+29.92

LOFAR KEY SCIENCE PROJECTS

The most impactful scientific activity and technical solutions are developed within these communities

LETTER

doi: 10.1038/nature 16976

A large light-mass component of cosmic rays at 10¹⁷-10^{17.5} electronvolts from radio observations

S. Buitink^{1,2}, A. Corstanje², H. Fakke^{2,3,45}, I. R. Hörandel^{2,4}, T. Haege⁶, A. Nelles^{3,7}, J. P. Rachen², L. Rossetto², P. Schellart², O. Scholten^{6,8}, S. ter Veern³, S. Thoudam⁷, T. N. G. Trinh⁴, J. Anderson¹⁰, A. Angekaa^{3,10}, I. M. Avruch^{12,13}, M. E. Bell^{4,4}, M. J. Benthum^{3,5}, G. Bernand^{16,6,7}, P. Best⁴⁴, A. Bonafede¹⁰, F. Breitling⁵⁰, J. W. Beoderick^{2,14}, M. N. Broux,^{13,14}, M. E. Bell^{4,4}, M. J. Benthum^{3,15}, G. Bernand^{16,6,7}, P. Best⁴⁴, A. Bonafede¹⁰, F. Breitling⁵⁰, J. W. Beoderick^{2,14}, W. N. Broux,^{13,14}, M. Brüggen¹⁹, H. R. Butcher²⁷, D. Carbone²³, B. Ciardi²⁴, J. E. Cornw y²⁵, F. de Casperin¹⁹, E. de Ceus^{3,26}, A. Deller³, R. -J. Dettmar⁷⁷, G. van Diepen⁴, S. Duscha³, J. Eisköffel²⁶, D. Engels²⁶, T. E. Enriquez², R. A. Fallows³, R. Ferder²⁶, C. Ferrari²¹, W. Frieswijk², M. A. Garrett^{1,25}, J. M. Griefkmeier^{3,3,4}, A. W. Gunst⁴, M. P. van Haardem³, T. E. Hassall¹⁰, G. Heakl^{11,1}, U. T. Hessels^{3,13}, M. Konst^{11,14}, N. Gonst¹¹, M. P. van Haardem³, T. E. Hassall¹⁰, G. Heakl^{31,1}, U. T. Hessels^{3,15}, E. Juette²⁷, A. Karastergiou³⁰, V. I. Koodratiev^{3,56}, M. Kramer^{3,77}, M. Kuniyoshi²¹, G. Kuper⁴, J. van Leeuwen^{3,23}, G. M. Loose³, P. Maat³, G. Maan⁷⁰, S. Markoff²³, R. McFadden³, D. McKay-Bukowski^{29,40}, J. P. McKean^{3,21}, M. Mevias^{3,21}, D. D. Mulcahy³¹, H. Munk¹, M. J. Norden³, E. Orru³, H. Paas⁴⁴, M. Pandey-Pornmier⁴⁰, V. N. Pandey³, M. Fietka³⁰, R. Pizzo⁴, A. G. Folatidis³, W. Reich⁴, H. J. A. Röttgerin²⁷, A. Stewart⁴⁰, J. Swinbank^{23,43}, M. M. Scaife¹¹, D. J. Schwarz⁴⁴, M. Serylak⁴⁰, J. Suman³, O. Smirnov^{7,44}, E. W. Stappers⁹⁷, M. Steinmetz²⁰, A. Stewart⁴⁰, J. Swinbank^{23,43}, M. Mescais^{3,43}, R. Vermeulen³, C. Vock³, R. J. Van Weeren¹⁶, R. A. M. J. Wijers³³, S. J. Wijnhokd⁴⁵, M. Wise^{1,23}, O. Wucknitz³, S. Yatawatt³, P. Zarka⁴⁶, S. A. Zenauz⁴

6

SOFTWARE & TECNOLOGY

- Telescope Manager Specification System (TMSS)
- Monitor and Control (M&C) Subsystem for LOFAR 2 Station

□ STATION (2022+)

- INTERFERENCES (2021)
- POWER (2021+)
- TERRAIN (2022+)
- ROLLOUT (2023)
- TESTING (2023)
- CALIBRATION (2023)
- MAINTAINANCE (2023+)

RCU LBA+HBA INAF & ASTRON

CRITICAL ASPECTS 3.

1. LOFAR ERIC.

MIUR and INAF (LOFAR-It chair, INAF offices) are involved in the ERIC process. Step 1 is expected in September 2021, target is to establish/start ERIC LOFAR in 2022-23.

IT will be among the four initial ERIC member countries. ERIC provides important chances for fundraising, personnel, politics...

2. MEDICINA Station.

Rollout expected in 2023, preparation needs to start in 2022.

One problem is that the land is still owned

by the CNR ! Urgent task for INAF DG.

