

Finanziato dall'Unione europea NextGenerationEU

SLOTH: Shedding Light On dark matter wiTH cosmological simulations

Tiago Castro, Milena Valentini, Stefano Borgani, Jeppe Dakin, Klaus Dolag, Gabriele Parimbelli, Antonio Ragagnin, Luca Tornatore, and Matteo Viel

Spoke 3 Technical Workshop, Trieste October 11 / 11, 2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

- Impact of dark-matter nature on the first galaxies

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

- Two-flagship simulations with 10240^3 particles on 100 Mpc/h (one WDM with 3kev one CDM)
 - Downgraded to 6656^3 particles on 65 Mpc/h due to technical problems on Leonardo
 - Snapshot size: 10 Tb; Restartfile size: 65 Tb.
- 100 substructure catalogs extracted on-the-fly by SUBFIND
- Post-process it with GAEA semi-analytical method ("galaxy" painting)

- Technical Objective: Assess current parallelism performance of OpenGADGET on a large environment
- OpenGADGET: Tree-PM code, mpi+OpenMP+OpenACC parallelized

Timescale, Milestones and KPIs

- Timescale:
 - \circ 6 months to run the simulations
 - \circ $\,$ 2 months to create the galaxy catalogs $\,$
 - **4 months to write the paper**
- Milestones:
 - Assessment of OpenGADGET performance on GPUs
- KPIs:
 - Public access of the GAEA galaxy catalogs
 - Peer reviewed paper

- Accelerators on OpenGADGET:

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Accelerators on OpenGADGET:

- First results on WDM/CDM (10 Mpc/h; 1024^3 part):
 - Extraction of halo catalogs
 - Integration with GAEA

- First results on WDM/CDM (10 Mpc/h; 1024^3 part):

Thanks to Gabriele Parimbelli

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Thanks to

Jeppe Dakin

Accomplished Work, Results

- First results on WDM/CDM Flagship runs:
- ICs created with CONCEPT (Give it a try)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- "We should talk about Leonardo"
- On 479 jobs requesting 32 nodes, I have had 218 failures not catched by our code (45%).
- On 83 jobs requesting 256 nodes, I have had 69 failures not catched by our code (83%).

- "We should talk about Leonardo"

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Next Steps and Expected Results (by next checkpoint: April 2024)

- Use the small boxes to calibrate GAEA
- Run the Flagship simulations
- Create the Galaxy Catalogs