

Finanziato dall'Unione europea NextGenerationEU

Improve Cosmological Constraints with eFAM E. Sarpa, M. Viel - SISSA

Spoke 3 Technical Workshop, Trieste October 9 / 11, 2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

A new generation of Data

- The Euclid Space Mission
 (ongoing, ESA, spoke-3 engagement):
 full-sky galaxy distribution and lensing across 10 billion
 years
- The DESI survey (ongoing)
 full-sky galaxy distribution, peculiar velocities
- The Einstein telescope, Lisa (2030s): Gravitational waves

Our call

High-precision data-analysis

- Non-linear modelling of cosmological observables
 - galaxy clustering signal
 - galaxy peculiar motion

Big questions in cosmology

- What are the components of our Universe? What is their nature and abundance? (e.g. Dark matter, Dark energy)
- What are the laws of physics describing the Universe evolution?
 Is General Relativity correct?

Project overview

Technical objectives

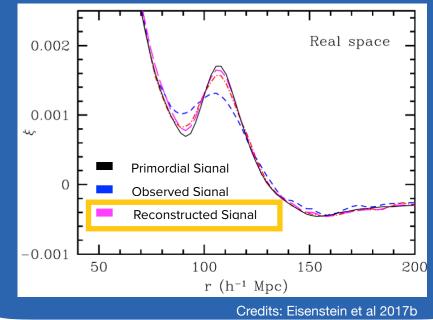
- 1. Deliver a ready-to-use package for the non-linear modelling of the galaxy clustering signal
- 2. Model the cosmology dependent density-velocity relation
- 3. Analyse the Euclid clustering signal: improve cosmological constraints (official BAO reconstruction pipeline)

Methodology eFAM back-in-time reconstruction

- Multidimensional Optimisation algorithm
- Inputs: observed galaxy positions
- Output: galaxy past positions and velocities as a function of time
- Novelty: Introduce non-linear aspects to enhance reconstruction accuracy, versatility (not fine tuned to a specific probe)

State-of-the art & critical points

eFAM in a nutshel


IDEA: Derives the non-linear trajectories of galaxies by minimising the action of the system

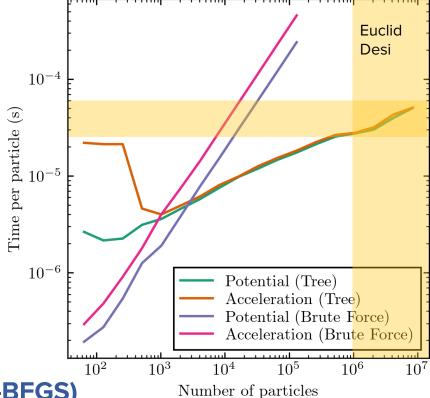
$$S = \int_{t_{\text{int}}}^{t_{\text{obs}}} dt \sum_{i=1}^{N} \left[\text{Pot}_i(\mathbf{x}, \mathbf{v}) + \text{Kin}_i(\mathbf{x}_i, \mathbf{v}_i) \right]$$

- Parametrises galaxy orbits $\mathbf{x}_{i}(t) = \mathbf{x}_{i,0} + \sum_{n}^{M} \mathbf{C}_{i,n} q_{n}(t)$
- Surveys the multidimensional parameter space, $M \times N_{\text{part}} \times 3 = \mathcal{O}(10 \times 10^7 \times 3)$, in search of the minima of the action
- Result: {x_i(t), v_i(t)}_i -> back-in-time galaxy catalogues
 (with more linear clustering signal)

Main Application: BAO reconstruction

- Displace galaxies backwards-in-time
- Model velocity distortion
- Obtain a more linear clustering signal
- Improve the extraction of cosmological information

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



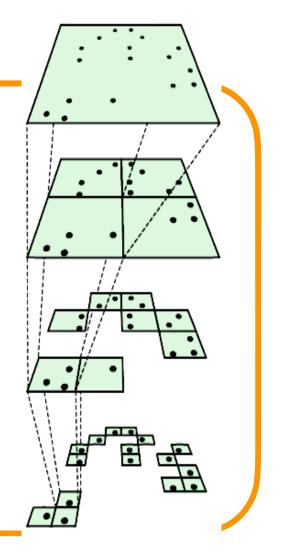
State-of-the art & critical points

Critical point

- Computational time:
 - Gravitational potential calculation, Treecode (pytreegrav*), CPU time $\propto Nlog(N)$,
 - one Action evaluation: 3' on 40cores
- Local Solution:
 - Local optimisation algorithm: Conjugate gradient method (L-BFGS)
- Cosmology dependence:
 - Retrieved trajectories depend on assumed background cosmology

Credits: https://github.com/mikegrudic/pytreegrav

 <u>https://github.com/mikegrudic/pytreegrav</u>)


State-of-the art & critical points

Solutions

Computational time:

Implementation of a Machine Learning based Poisson Solver

- Expected time-scaling: 50cpu h per training + 1ms model evaluation
- Perfect for mock analysis
- Beneficial for cosmological simulations (WP2/WP3)
- Cosmology dependence:
 - Enabling iterative reconstruction, loop on cosmological parameters

Roadmap

	Time-scale	Milestones	KPIs
Aug-Sept 2023	Development of eFAM 2.0: - Migration to python form C++ - Integration of new poisson solver - Parallelisation openMp	Successful development and validation of eFAM 2.0: 15x speedup	Algorithm accuracy eFAM velocities vs. "True" velocities in N-body simulations
Completed			
Oct-Dec 2023	Application to Euclid mock data:Completion of Euclid DR1 forecast- Apply eFAM to Euclid mock galaxy catalogs (Cubic simulation)- Measure the reconstructed	Algorithm efficiency: compare eFAM cosmological constraints with standard analysis	
Euclid Phase	clustering signal - Extract cosmological information from the reconstructed signal		
Jan 2023-Feb 2024	Preparation of Euclid BAO reconstruction paper	Paper ready for submission	Paper accepted for publication
Feb-Apr 2024	Development of eFAM 3.0: - Development of ML Poisson solver - Validation of new solver agains pytreegrav	Successful development and validation of eFAM 3.0	Algorithm efficiency & accuracy eFAM 3.0 vs eFAM 2.0 cpu time and accuracy challenge

Missione 4 • Istruzione e Ricerca

Thank you !