
UltraViolet

Scientific Rationale: Study Galaxies by Extracting (astro-)Physical Information from SED

 λ_{rest} [Å] 10^6 10⁸ 10⁹ best-fit $1-\sigma$ [Km] 10⁻⁴ stellar 10^{-7} extinct 10⁵ 10^{4} 10⁶ 10⁷ 10⁸ 10⁹ $\lambda_{\sf obs}$ [\mathring{A}] **Spectral Energy Distribution (SED)**

InfraRed

→ 1 zettabyte of data per year!

Technical Objectives, Methodologies and Solutions

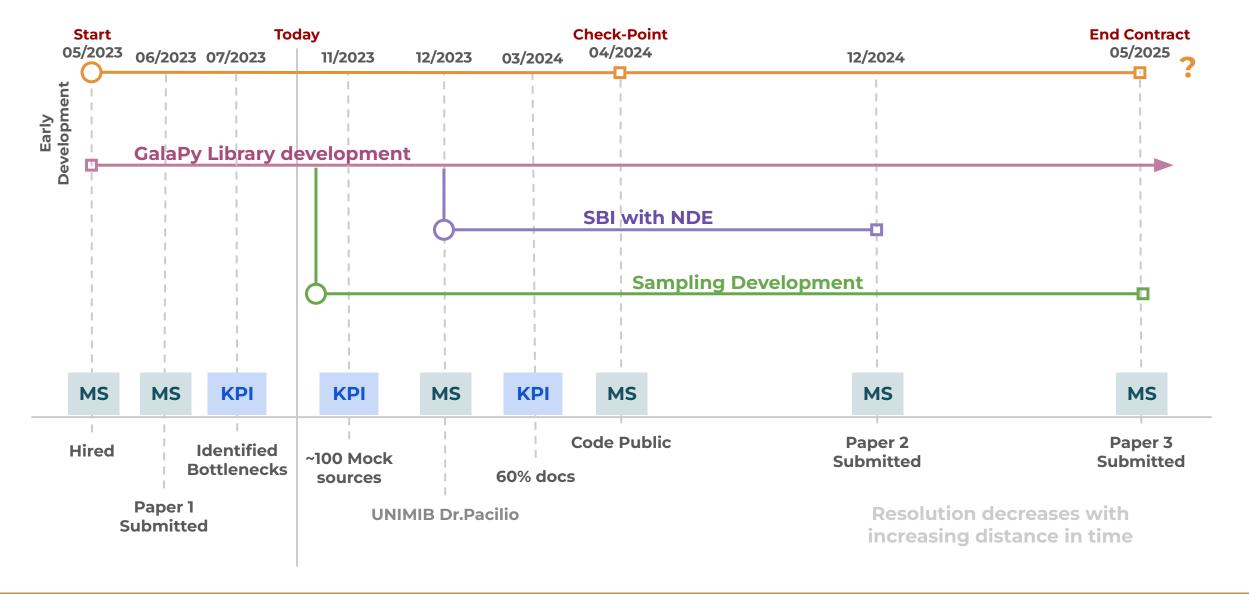
- → Bayesian sampling at the cost of template-fitting (or better if possible?)
 - Fit large catalogues contemporary
 - Currently 10s of minutes, desiderata ≤ 1 minute
- Parallelisation scheme
 - we are currently bound in parallelisation through Python
 - o as is the speed-up reaches a plateau at a factor x4.5: need to **re-think the strategy**
- Sampling strategy
 - o currently: MCMC and Dynamic Nested We have to investigate on alternatives:
 - Hierarchical Bayesian
 - Hamiltonian
 - Pre-Conditioned Monte-Carlo

(virtually) On-the-fly posteriors to handle up-coming data-fluxes from surveys and new experiments

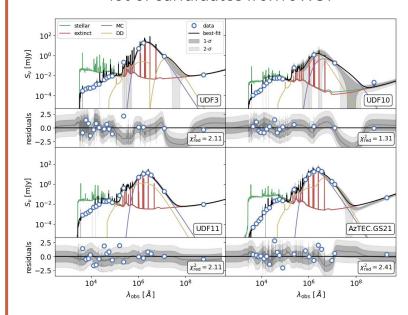
• Simulation Based Inference

Train neural network models of the posterior distribution with given input-data

- o SBI package (Tejero-Cantero et al., 2020)
- PyDELFI (Alsing et al., 2019)


Main difficulties:

- Combining data from different experiments
- Generating the training data


Accomplished Work, Results

Paper 1 Submitted presentation of the code and application to real and simulated photometric data

High-redshift dusty star-forming

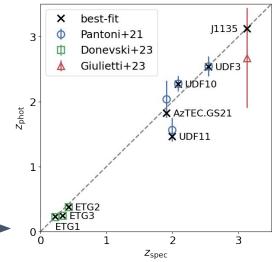
- o interesting for GFE studies
- lot of candidates from JWST

- Lensed + upper limits
 - Data from Giulietti et al., 2022
- Early type galaxies
 - no ISM/dust only stellar contribution
 - consistency of the SFH model

Identified Bottlenecks

Serial implementation is working with minimal memory consumption and efficiently

- Sampling
- Parallelization



~100 Mock sources

We need to generate and analyse in a realistic framework the possible sources while validating the tool over the parameter space.

- 100 with spectroscopic redshift W.I.P. 60%
- 100 derivation of photometric redshift

but Photometric Redshift estimation works

Next Steps and Expected Results (by next checkpoint: April 2024)

November 2023:

2x100 Mock sources generated & analysed for validation purposes

- o 100 with spectroscopic redshift (W.I.P)
- o 100 also deriving photometric redshift

December 2023:

Start collaboration with University of Milano Bicocca

• feasibility of **Simulation Based Inference** with Neural Density Estimators

March 2024:

Documentation complete up to 60-80%

- Complete Tutorials
- Scientific context description
- o API documentation incomplete is fine

• April 2024:

Library public

- o GitHub, Python Package Index
- ReadTheDocs for online documentation

MS