

Finanziato dall'Unione europea NextGenerationEU

Improving photo-z estimation under covariate shift with StratLearn Roberto Trotta, Chiara Moretti (SISSA) Max Autenrieth, David van Dyk (Imperial) David Stenning (Simon Fraser U.) Riccardo Serra (U Trieste)

Spoke 3 Technical Workshop, Trieste October 9 / 11, 2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SISSA

Scientific Rationale: Beating Malmquist bias with Machine Learning

- Selection effects are ubiquitous in astronomy: e.g.,
 brighter objects are more likely to be observed
 (Malmquist 1922)
- -The problem with (supervised) machine learning:
- If the training set is systematically different from the test set because of Malquist bias or other 'selection effects', generalization will be poor.
- -Our general-purpose, principled solution: **StratLearn**

Image: Wikimedia

Covariate shift

Given a feature space, X, and a label space, Y(K > 1 classes/dependent variables)

 n_s labelled samples $\{x_i^s, y_i^s\}$ from the source (s) domain

 n_t unlabelled samples from the target (t) domain, $\{x_i^t\}$.

Task: predict $\{y_i^t\}$

Covariate shift occurs when:

 $p_s(y \mid x) = p_t(y \mid x)$

and $p_s(x) \neq p_t(x)$

I.e., the training set is nonrepresentative of the test set. Features: redshift & apparent mag Label: la or non-la

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

"STACCATO": Revsbech, RT, van Dyk (2018): StratLearn, Autenrieth et al (2023)

Propensity scores

 $e(x_i)$ = probability for object *i* to be selected into the source domain, using the *whole features* set:

 $e(x_i) \equiv P(s_i = 1 \mid x_s, x_t)$

Key idea ("StratLearn"):

subdivide ("stratify") target and source data in *k* subgroups according to quantiles of their propensity scores. Then supervised learning in each stratum ("stratified learner")

Propensity scores as balancing scores

Rosenbaum & Rubin (1983, 1984) show that, conditional on their propensity scores, the *k* subgroups ("strata") have approximately balanced covariate distribution, i.e.

$$p_{s_j}(x) \approx p_{t_j}(x)$$
 for $j = 1, \dots, k$

Since $p_s(y|x) = p_t(y|x)$, it follows that

$$p_{s_j}(x, y) \approx p_{t_j}(x, y)$$
 for $j = 1, ..., k$

Hence covariate shift approximately disappears.

Covariate x₂

Training

Partitioning in propensity score quintiles groups ("strata")

Toy example: classification in 2D

Learning happens within each stratum separately

Training

Figure: Riccardo Serra

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Accomplished Work

MICE data (simulation study, Wright et al. (2020)):

Photometric data:

- ~12 Million photometric target samples (from shear-measurement weighted photometric distribution)
- 9 (noisy) magnitudes, bands u,g,r,i,Z,Y,J,H,KS

Aim: Assign photometric target objects to tomographic bins, and obtain unbiased mean redshift within each bin.

 Table 1: Tomographic redshift bins.

	Bin 1	$Bin \ 2$	Bin 3	Bin 4	Bin 5
Redshift range	(0.1, 0.3]	(0.3, 0.5]	(0.5, 0.7]	(0.7, 0.9]	(0.9, 1.2]

Slide credit: Max Autenrieth

Results Tomogr

Tomographic bin assignment improved on all metrics wrt to the standard approach

	StratLearn	ZB
Performance metric	mean (sd)	mean (sd)
Accuracy	0.622 (0.003)	0.526 (-)
Balanced Accuracy	0.718 (0.003)	0.706 (-)
Sensitivity	0.502 (0.006)	0.493 (-)
Specificity	0.934 (0.001)	0.918 (-)
Kappa	0.439 (0.006)	0.415 (-)

Slide credit: Max Autenrieth

Results

Estimation of the binned redshift population density via Inverse-Propensity score weighting – for use in downstream weak lensing analysis

Ongoing work

With Riccardo Serra (Master student, UniTS), Chiara Moretti (postdoc):

Conditional density estimation of photo-z under realistic simulated data and covariate shift scenario.

Eventual target: Application to Euclid data.

Current work: 100,000 objects sampled from the Buzzard Flock catalogue (DeRose et al., 2019), a synthetic catalogue generated by adding galaxies to a dark matter N-body simulations and imposing a realistic set of observational properties and systematics (Stylianou et al., 2022); similar to what can be expected for LSST (*ugrizy* bands)

Work by Riccardo Serra & Chiara Moretti

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Using StratLearn:

- Smaller RMSE
- No bias
- Smaller number of catastrophic outliers.

Work by Riccardo Serra & Chiara Moretti

Next Steps and Expected Results (by next checkpoint: April 2024)

- Publication of Weak Lensing calibration methods (MICE sims) target: Dec 2024
- Publication of photo-z proof-of-concept on sims target: Feb 2024
- Application to Euclid simulation of photo-z reconstruction target April 2024
- Application to downstream WL analysis and cosmological parameters target April 2024
- 3 presentations in academic conferences, 3 in public outreach eventa target April 2024

Conclusions

- -StratLearn offers a principled, all-purpose solution to the problem of unrepresentative training data
- -Best-in-class performance for SNIa classification (not shown), WL tomographic binning, photo-z estimation