

Finanziato dall'Unione europea NextGenerationEU

Machine Learning and Deep Learning algorithms for Gaia mission data analysis

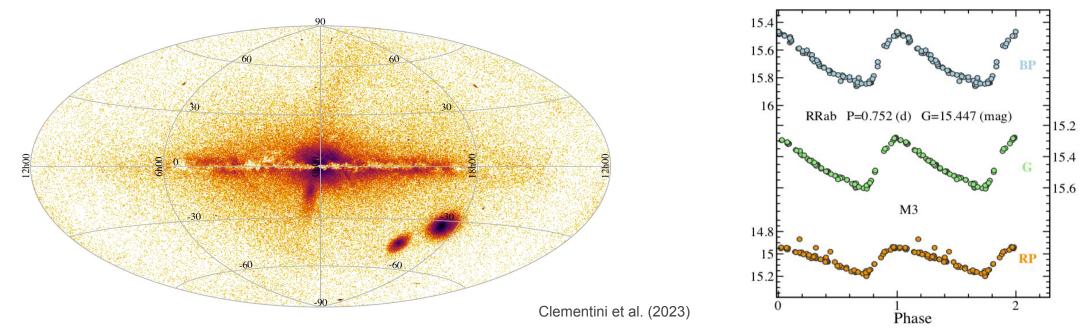
Lorenzo Monti, Tatiana Muraveva

INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna

Spoke 3 Technical Workshop, Trieste October 9 / 11, 2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca



Scientific Rationale

- \rightarrow RR Lyrae stars are periodic (Period < 1 day), pulsating, variable stars.
- → There is a correlation between RRL's light curves and their metallicities ([Fe/H]).
- → Gaia Data Release 3 provides a catalogue of 270 905 RRLs along with their time-series photometry.

Project Main Goal: Derive metallicities of RR Lyrae stars from their time-series photometry data using Machine Learning/Deep Learning algorithms.

Technical Objectives, Methodologies and Solutions

- Estimating of metallicities from the parameters of the Fourier decomposition for a limited sample (~160) of RR Lyrae stars with accurate metallicity values:
 - **Collecting** the clean sample of RR Lyrae with accurate metallicity estimates.
 - **Feature selection:** applying Sequential Feature Selector, Select K best to identify the most important parameters for determination of metallicity.
 - **ML algorithms** (e.g. XGBoost) to measure metallicities from the Fourier parameters.
 - **Bayesian** approach to fit the linear relation between Fourier parameters and metallicities.
- → Applying all listed above methods produce a catalogue of thousands of RR Lyrae stars with accurate metallicity estimates.
- → Building Neural Networks to estimate metallicity of RR Lyrae stars from time-series photometry based on the catalogue produced on the previous steps, in particular:
 - Time Series Prediction with LSTM Recurrent Neural Networks.
 - **Transformers architecture** applied to time-series instead of natural language.

Timescale, Milestones and KPIs

OCT 2022 - OCT 2023

- Estimating of metallicities from the parameters of the Fourier decomposition for a limited sample (~160) of RR Lyrae stars with accurate metallicity values:
 - **Collecting** the clean sample of RR Lyrae with accurate metallicity estimates.
 - **Feature selection:** applying Sequential Feature Selector, Select K best to identify the most important parameters for determination of metallicity.
 - **ML algorithms** (e. g. XGBoost) to measure metallicities from the Fourier parameters.
 - Bayesian approach to fit the linear relation between Fourier parameters and metallicities.

OCT 2023 - DEC 2023 Applying all listed above methods produce a catalogue of thousands of RR Lyrae stars with accurate metallicity estimates. Metallicity validation.

DEC 2023 - OCT 2024

Building Neural Networks such as **LSTM** and **Transformers architecture** in order to estimate metallicity of RR Lyrae stars from time-series photometry based on the catalogue produced on the step above.

Timescale, Milestones and KPIs

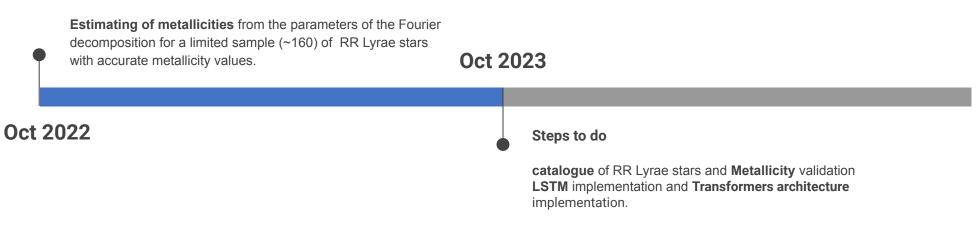
OCT 2023 - DEC 2023 Applying all listed above methods produce a catalogue of thousands of RR Lyrae stars with accurate metallicity estimates. Metallicity validation.

ML/DL algorithms for Gaia mission data analysis	2022			2023										
	ОСТ	NOV	DIC	JAN	FEB	MAR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
Collecting the clean sample of RR Lyrae														
Feature selection to identify important parameters (metallicity)														
ML algorithms to measure metallicities														
Bayesian approach to fit linear relation (Fourier parameter and metallicity)														
catalogue of RR Lyrae stars and Metallicity validation														

Timescale, Milestones and KPIs

DEC 2023 – OCT 2024 Building Neural Networks such as **LSTM** and **Transformers architecture** in order to estimate metallicity of RR Lyrae stars from time-series photometry based on the catalogue produced on the step (1).

	2023			2024								
ML/DL algorithms for Gaia mission data analysis	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
catalogue of RR Lyrae stars and Metallicity validation	•											
Create time-series photometry Dataset												
LSTM implementation												
Transformers architecture implementation												



Accomplished Work, Results

Steps done

- Invited talk of Muraveva T. describing the results on IAU Symposium 376 "At the cross-roads of astrophysics and cosmology: Period–luminosity relations in the 2020s, 17-21 April 2023, Budapest, Hungary.
- Invited talk of Muraveva T. describing the results on the MW-Gaia 2023 meeting "Science and technology roadmap for µas studies of the Milky Way", 18-20 July 2023, Lund, Sweden.

Next Steps and Expected Results (by next checkpoint: April 2024)

Next steps:

- 1) Validation of the **derived catalogue**.
- 2) Building a beta **LSTM model** for April (the next checkpoint).

Expected results (and KPI):

- 1) Paper *"Metallicities and distances of RR Lyrae stars estimated with Machine Learning algorithms"* by Muraveva et al. submitted to MNRAS.
- 2) Validated catalogue of RR Lyrae stars with estimated metallicities published.
- 3) Open source repository released with CD/CI pipeline and automatic release.

Thank you for your attention

contact
Tatiana Muraveva tatiana.muraveva@inaf.it

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca