

Finanziato dall'Unione europea NextGenerationEU

Object detection, self-supervision and XAI using real and synthetic astronomical data

Simone Riggi, Thomas Cecconello, Filomena Bufano

Spoke 3 Technical Workshop, Trieste October 9 / 11, 2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Use cases

- 1. Object detector framework for radio source extraction
 - a. Simone Riggi, Thomas Cecconello
- 2. Radio source analysis with supervised and self-supervised learning techniques
 - a. Simone Riggi, Thomas Cecconello
- 3. Unsupervised Clustering of stellar SEDs with XAI
 - a. Filomena Bufano

Scientific Rationale - Use case 1

• Develop ML-based source extractor tools able to detect radio sources (multi-island objects, diffuse/extended, artefact, ...) missed by traditional finders in SKA and precursor maps

- Reference paper: "RIGGI, Simone, et al. Astronomical source detection in radio continuum maps with deep neural networks. Astronomy and Computing, 2023, 42: 100682."
- Survey paper: "SORTINO, Renato, et al. Radio astronomical images object detection and segmentation: a benchmark on deep learning methods. Experimental Astronomy, 2023, 1-39."

Scientific Rationale - Use case 2

Supervised learning

2-islands extended (multi-components)

Self supervised learning

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Scientific Rationale - Use case 3

- A surprisingly high percentage of stellar objects in astrophysical catalogues are unclassified
- We aim to offer a method to classify unknown/new sources based on available photometry
- To do that we will train a model on a large collection of synthetic stellar Spectral Energy Distributions (SEDs), finding physically meaningful clusters related to specific physical parameters (e.g. temperature, circumstellar dust)

Technical Objectives, Methodologies and Solutions - Use Case 1

- Improve model accuracy on specific morphological radio source classes
 - a. Increase dataset size and rebalance for specific classes
 - i. Add new real data from ASKAP and MeerKAT surveys
 - ii. Add synthetic data using diffusion models (link)
 - b. Improve image preprocessing (e.g. normalization)
 - c. Improve backbone by exploring new methods of pretraining e.g. Self Supervised Learning (Use case 2)

- . Multi-node parallelization of prediction stage with MPI and benchmarks
 - a. Split large maps in to tiles (in order to fit in GPU memory) and merge border detection

3. Framework update of repository engine (<u>https://github.com/SKA-INAF/caesar-mrcnn</u>) a. Tensorflow v1 to v2

Application to new SKA and precursor data to create new catalogues/dataset

Technical Objectives, Methodologies and Solutions - Use Case 2

- Benchmark performance using different methodologies:
 - a. Transfer learning from model trained on regular images (e.g. ImageNet)
 - b. Train a model from scratch with supervised learning on specific tasks
 - c. Transfer learning using Self supervised learning on random radio map cutouts
 - d. Transfer learning using Self supervised learning on curated dataset (source in the center of the image)

- Build radio dataset for Self Supervised Learning and test dataset to evaluate performance
 - a. Build a dataset with random cutouts from radio tiles
 - b. Build unlabeled dataset with sources in the middle of the image

Technical Objectives, Methodologies and Solutions - Use Case 3

Generate a training dataset of synthetic stellar SEDs

Produce a new model to reduce dimensionality

3. Clusterize the embeddings.

4. Infer a physical meaning of the embeddings.

Timescale, **Milestones**

Oct 23	Apr 24	Oct 24	Apr 25	End
Use case 1				
 Code refactored in tensorflow 2 MPI v1 implementation SSL model tested 	 Large map annotated data ready Dataset extended Models availability increased for benchmarking 	 Dataset extension complete Benchmarking complete MPI implementation completed 	 d Code&Model release Results presented in a conference 	 Application on new precursor data
Use case 2				
 Datasets v1 ready SSL methods implemented Beta models ready Benchmark method defined 	 Datasets v2 ready Benchmark started 	 Dataset completed Benchmark completed 	 Code&Model release Results presented in a conference 	
Use case 3				
 Data collection started Clustering and XAI Methods study and selection started 	 Dataset v1 of synthetic Stellar SEDs ready 	 Dataset v2 ready Model v1 	 Preliminary results shown in a conference 	 Trained model and clustering results
ICSC Italian Research Center on I	High-Performance Computing, Big Da	ata and Quantum Computing	Missione 4 • I	struzione e Ricerca

Timescale, Milestones and KPIs

	Timescale	Milestone	KPIs
Use Case 1	Apr 2025	Code & Model release	1
	Apr 2025	Presentation of methods and results in scientific conferences	1
Use Case 2	Apr 2025	Code & Model release	1
	Apr 2025	Presentation of methods and results in scientific conferences	1
Use Case 3	Apr 2025	Presentation of methods and results in scientific conferences	1

First results - Use cases 2

Source Morphology Classification

Radio Galaxy Zoo (RGZ) dataset: #82084

- cutouts centred around sources
- 6 classes (1C-1P, 1C-2P, 1C-3P, 2C-2P, 2C-3P, 3C-3P)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca