

Finanziato dall'Unione europea NextGenerationEU

Optimization of Data Reduction for Future CMB Experiments

Avinash Anand¹ and Giuseppe Puglisi²

¹University of Rome "Tor Vergata", ²University of Catania

Spoke 3 Technical Workshop, Trieste October 9 / 11, 2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Scientific Rationale : Map-making for CMB experiments

- Data model for CMB signal $\ d_{i,t} = [A_i]_{tp} s_p + n_{i,t}$ -
 - $p \rightarrow$ pixel label; $i \rightarrow$ detector label; $t \rightarrow$ time stamp
 - $A_i \rightarrow$ Pointing matrix for detector *i*

 - s_p → signal amplitude at pixel p
 n_{i,t} → noise amplitude at time t for detector i
- Maximum likelihood solution taking into account multiple detectors observing at same frequency

$$\hat{s} = \left(\sum_{ij} A_i^t ig[N^{-1}ig]_{ij} A_j
ight)^{-1} ig(\sum_{ij} A_i^t ig[N^{-1}ig]_{ij} d_j ig)$$

- $N = \langle nn^t \rangle$ is the noise correlation matrix in time and N_{ij} is the block of N corresponding to the noise correlation between detectors *i* and *j*
- For LiteBIRD-like mission, inversion direct inversion of N⁻¹ is impractical due to matrix size

Scientific Rationale : Map-making for CMB experiments (contd.)

- For stationary and end-to-end continuous data segment, N_{ii} is **circulant**. So,

$$\left[N^{-1}
ight]_{ij,tt'} = \mathcal{F}ig\{ig[P^{-1}(\omega)ig]_{ij}ig\}(t-t')ig\}$$

- $P(\omega)$ is the power spectra of the noise amplitude vector and \mathcal{F} is the Fourier transform operator
- Inversion of matrix N is now reduced to computation of just the first rows of block matrices N_"
- The map-making method with circulant matrix approximation has already been implemented in **SANEPIC¹** (Signal And Noise Estimation Procedure Including Correlations)
- Goal: To optimize SANEPIC for LiteBIRD² mission data and wrap the code with LiteBIRD simulation framework

¹Patanchon, G., et al. "SANEPIC: A mapmaking method for time stream data from large arrays." The Astrophysical Journal, vol. 681, no. 1, 2008, pp. 708–725, https://doi.org/10.1086/588543.

²LiteBIRD Collaboration. Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey, Progress of Theoretical and Experimental Physics, Volume 2023, Issue 4, April 2023, 042F01, https://doi.org/10.1093/ptep/ptac150

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

- Complete data size: ~250 TB
- Estimated execution walltime on Marconi for complete dataset: >200,000 CPU hours
- Performance analysis for reduced dataset using perf tool:

Event	Counts	Summary
Cycles	2.32x10 ⁸	1.851 GHz
Instructions	2.58x10 ⁸	1.11 insn per cycle
Cache-references	2.81x10 ⁶	22.424 M/sec
Cache-misses	1.47x10 ⁶	52.446 % of all cache refs
Branches	5.81x10 ⁷	463.160 M/sec
Branch-misses	6.98x10 ⁵	1.20% of all branches

- Large cache-misses: Possibility of improving memory access pattern
- Low branch-misses: Possibility of compile-time optimization

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Technical Objectives, Methodologies and Solutions (contd.)

- Profiling using **gprof** gives further insight:

% Time Elapsed	Self Time Elapsed	No. of Calls	Function Name
41.60	5087.74	17160	<pre>do_PtNd(double*, double*,)</pre>
19.03	2327.77	16874	<pre>deproject(double*, long*,)</pre>
13.30	1626.77		libm_cos_19
12.82	1567.37		libm_sin_19
2.62	320.47	286	<pre>compute_diagPtNPCorr(double*, long*,)</pre>
2.42	295.86	16874	<pre>write_tfAS(double*, double (*) [2],)</pre>
1.85	226.10		main
1.11	135.29		<pre>compare_global_array_long(void const*, void const*)</pre>

- Optimization required only in four routines

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions (contd.)

- Optimization target:
 - Code refactoring
 - Improving memory access pattern by redefining the data structures
 - To reduce the branching by utilizing compile-time optimization
 - To minimize process imbalance

- Further optimization:
 - Offloading Fourier transform and MatVec operations to GPU with suitable offloading technology

Timescale, Milestones and KPIs

- Started work on SANEPIC from July 2023
- Current status: Validation and debugging (~1 month)

- CPU optimization (~1 month)
- Validation, profiling and benchmark (~1 month)
- GPU optimization (~1 month)
- Validation, profiling and benchmark (~0.5 month)

Next Steps and Expected Results (by next checkpoint: April 2024)

- Optimization of SANEPIC for LiteBIRD
- Validation of the code with different noise components added to the sky signal
- Preparing a detailed documentation of the code
- Wrapping SANEPIC with LiteBIRD simulation framework
- Optimization of other modules of LiteBIRD simulation framework

_

Accomplished Work, Results

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

$$\hat{s}=\left(A^tN^{-1}A
ight)^{-1}A^tN^{-1}d$$