

Unveiling the Stellar Origins of Types Y and Z Silicon Carbide Grains: New Isotope Insights

Nan Liu, Boston University Conel Alexander, Carnegie Institution Jianhua Wang, Carnegie Institution Supernova

AGB Star

Protoplanetary Disk

Molecular Cloud

Presolar Grains

Asteroids and Comets

Meteorites and Interplanetary Dust Particles

by Larry Nittler, not to scale

Heavy-element Isotopic Compositions

Neutron Bursts

- $\delta^{i}Mo = \left[\frac{\left(\frac{iMo}{96}Mo\right)_{grain}}{\left(\frac{iMo}{96}Mo\right)_{sun}} 1\right] \times 1000$
- powered by ${}^{22}Ne(\alpha,n){}^{25}Mg$
- neutron density of 10¹⁷ n/cm³ at T ~ 10⁹ K (Meyer et al. 2000)
- could occur in He/C zone during explosion (e.g., Liu et al. 2018)

Mainstream Grains – Major AGB Silicon Carbide Dust

MS SiC data from Presolar Grain Database (Stephan et al. 2024, ApJS)

- Mainstream (MS) grains: ~90% of AGB grains, shown in density map
- Si isotopes of MS grains: Controlled by GCE effect

Y and Z Grains Characterized by ³⁰Si Excesses

• $\delta^{29} \text{Si}_{28} = \left[\frac{\binom{29}{28}Si}{\binom{29}{28}Si}_{Si}}_{Sin} - 1\right] \times 1000$

- Mainstream (MS) grains: ~90% of presolar SiC grains, shown in density map
- Si isotopes of MS grains: Controlled by GCE effect
- Y and Z grains: 1–5% of presolar SiC grains; the percentage increases with decreasing grain size
- Si isotopes of Y and Z grains: More efficient production of ³⁰Si in lowermetallicity AGB stars

Y and Z SiC data from Liu et al. (2019) ApJ and Liu et al. (2022) EPJA

Heavy-element Isotope Data Challenge Low-Z Origins

Y and Z SiC data from Liu et al. (2019) ApJ

Heavy-element Isotope Data Challenge Low-Z Origins

Y and Z SiC data from Liu et al. (2019) ApJ

Y and Z SiC data from Liu et al. (2022) EPJL

Are MS, Y, and Z Grains Different in ¹⁴N/¹⁵N and ²⁶Al/²⁷Al?

 Y grains are defined to have ¹²C/¹³C ≥100, and Z grains <100

 Literature data suggest the three types of grains are similar in the N isotopic ratio, and ²⁶AI/²⁷AI data for Y and Z grains are sparse

Problems in Literature Data

- Varying degrees of N and Al contamination (Liu et al. 2021 ApJL)
- Inaccurate determination of inferred initial ²⁶AI/²⁷AI due to uncertain calibration of analytical measurements of SiC grains (*Hoppe et al. 2023 ApJL*)
- Challenges in defining Z grains (Stephan et al. 2024 ApJS)

SiC data from Presolar Grain Database (Stephan et al. 2024, ApJS)

New NanoSIMS Investigation of N and AI Isotopes

Addressing Problems in Literature Data

 Suppressing contamination by sufficient presputtering and high-resolution imaging (Liu et al. 2021 ApJL)

New NanoSIMS Investigation of N and AI Isotopes

Addressing Problems in Literature Data

- Suppressing contamination by sufficient presputtering and high-resolution imaging (Liu et al. 2021 ApJL)
- Better calibration of analytical measurements of SiC grains (*Liu et al. 2024 ApJL*), suggesting a factor of two increase in inferred initial ²⁶AI/²⁷AI ratios for SiC grains

New NanoSIMS Investigation of N and AI Isotopes

Addressing Problems in Literature Data

- Suppressing contamination by sufficient presputtering and high-resolution imaging (Liu et al. 2021 ApJL)
- Better calibration of analytical measurements of SiC grains (*Liu et al. 2024 ApJL*), suggesting a factor of two increase in inferred initial ²⁶Al/²⁷Al ratios for SiC grains
- Si isotopes were measured twice to improve the accuracy so that Z grains can be better recognized

NanoSIMS Analysis Conditions

1. ¹²C₂⁻, ¹³C₂⁻, ¹²C¹⁴N⁻, ¹²C¹⁵N⁻, ²⁸Si⁻, ²⁹Si⁻, ³⁰Si⁻ 2. ²⁴Mg⁺, ²⁵Mg⁺, ²⁶Mg⁺, ²⁷Al⁺, ²⁸Si⁺, ²⁹Si⁺, ³⁰Si⁺

More Restricted N Isotope Distribution of MS Grains

911 new MS grains from this study

No Significant Differences in ¹⁴N/¹⁵N

56 new Y and 28 new Z grains from this study

Restricted ²⁶AI/²⁷AI Distribution of MS Grains

Restricted ²⁶AI/²⁷AI Distribution of MS Grains

Y and Z Grains Have Higher Initial ²⁶Al/²⁷Al Ratios

No Correlation between ²⁶Al/²⁷Al and Initial Metallicity

Positive Trend between ²⁶Al/²⁷Al and ³⁰Si Excess

Conclusions

- ∆³⁰Si₂₈: max T
- ¹²C/¹³C: cool bottom processing (CBP), H burning, and He burning
- ²⁶Al/²⁷Al: H burning, and He burning and, perhaps, CBP
- ∆⁵⁰Ti₄₈: ¹³C pocket
- *δ*⁸⁸Sr₈₇: ¹³C pocket

Question: Instead of originating in low-metallicity AGB stars, perhaps Y and Z grains' parent stars simply are more enriched in AGB nucleosynthesis products at the surface?