

Steps towards disentangling asymmetric AGB winds using MATISSE: the case of X TrA

Vlad Răstău vlad.rastau@univie.ac.at

Collaborators: Claudia Paladini, Julien Drevon & BIN-AGB team

Work advanced with the help of the ESO Early Career Scientist Programme

XIV Torino Workshop on AGB stars - 11.6.2024

Witersität AGB stars and mass-loss

Origins of mass-loss. Painting by Kathrien Kohlenberg

- Asymptotic giant branch stars:
 - significant mass-loss
 - complex wind formation mechanism
 - pulsation enhanced dust-driven outflow
- Many open questions e.g. geometry of outflows
- AGB atmospheres & CSEs many mechanisms at play
 - pulsations, convection, companions, ISM
 - deviations from spherically symmetric, continuous outflows
- AGB to PN transition major difference in observed structures
- Need to look at all scales to understand what's going on

Generative AGB & PN discrepancy

- How do we get from (mostly) symmetric wind structures seen around AGB stars to (mostly) asymmetric PNe?
- major morphology changes seemingly fast transition

Răstău+2023

U Ant – irregular, C-type

 β Gru – semi-regular, M-type

R Dor – semi-regular, M-type

Wilensität AGB & PN discrepancy

- How do we get from (mostly) symmetric wind structures seen around AGB stars to (mostly) asymmetric PNe?
- major morphology changes seemingly fast transition

Southern Ring Nebula, JWST

NGC 2392, HST

Hourglass Nebula, HST

 need to better understand the formation and evolution of AGB winds

MATISSE BIN-AGB Large program

- Origin of deviations
 intrinsic, extrinsic
- $\bullet\,$ Many asymmetric structures/outflows few known companions, especially within 10 R_*
- Different methods of finding companions:
 - radial velocity measurements
 - astrometry
 - interferometry (infrared, sub-mm, radio)
- need high spatial resolution observations
- VLTI/MATISSE

- $\bullet\,$ LM band 3-5 μm , 3 mas spatial resolution
- N band 8-13 $\mu {
 m m}$, 10 mas spatial resolution
 - $\, \bullet \,$ can probe the dust-forming regions up to 10 ${\rm R}_*$
 - can probe dust and gas at the same time

MATISSE BIN-AGB Large program (2)

- BIN-AGB Large program PI Claudia Paladini
 - 180 hours of observing time
 - sample of 10 AGB stars with asymmetric environments
 - M, S and C-type
 - single, suspected and known binaries
 - large team handling data reduction, image reconstruction & modelling
- Analysis of sample:
 - inner-wind properties
 - dust chemical properties
 - causes for asymmetry in the outflows
- One paper already out V Hya, Planquart+2024

My role: analyse X TrA data

 \bigcirc

- C-type, irregular variable (Lb)
- no indications of binarity so far
- ullet SiC dust spectral features at pprox 4 ${
 m R}_{*}$ (MIDI, Paladini+2017)
 - MIDI spectra ightarrow diameter pprox 22-39 mas
- $\dot{\mathrm{M}} \approx 1.8 \cdot 10^{-7} \,\mathrm{M_{\bigodot}/yr}$
- infrared ring morphology

Herschel/PACS image of X TrA (70 μm), Cox+2012

• MATISSE observations cover $2-10\,\mathrm{R_{*}}$

iversit<u>ät</u>

^{© wiversität} My role: analyse X TrA data (2)

Light curve of X TrA – 1.1.2000 to 1.6.2024 (AAVSO – V)

--- MIDI - 23.4.2011 to 10.8.2011 --- MATISSE - 2.4.2022 to 5.7.2022

Buildensität My role: analyse X TrA data (2)

uv-coverage L-band data $(3.1 - 3.8 \ \mu m)$

6

Method

- reduce the data Matisse Python tools (MATISSE Consortium)
- Quality check (QC):
 - $\bullet \ \mathsf{QC} \to \mathsf{calibration} \to \mathsf{QC}$
 - QC via Python codes developed by J. Drevon
- select wavelength ranges used probe specific features
 - L-band 3.12 to 3.20 μ m (C₂H₂ & HCN absorption band)
 - L-band 3.60 to 3.65 μ m (pseudo-continuum)
- ightarrow geometric modelling of data ightarrow size estimates
- Image reconstruction multiple algorithms
 - MiRA, Thiébaut 2008
 - SQUEEZE, Baron+2010
 - IRBis, Hoffman+2014
 - helps confirm results & weed out skepticism

What next?

X TrA

- N-band data
- more in-depth analysis coming paper in the works
 - \rightarrow
 - second C-type star from the sample to be analysed
 - first with no confirmed companion
- High angular resolution imaging essential for understanding the origins of AGB mass-loss
- Future steps:
 - $\bullet \ \ {\sf close-up} \rightarrow {\sf extended} \ {\sf environment}$
 - hydrodynamical modelling work

Stay tuned!

vlad.rastau@univie.ac.at