# Dust Production from Metal-Poor AGB Stars: JWST Results from Sextans A

#### Elizabeth Tarantino

Postdoctoral Fellow

Space Telescope Science Institute

Collaborators: <u>Martha Boyer</u>, <u>Greg Sloan</u>, <u>Jain McDonald</u>, Joris Blommaert, Flavia Dell'Agli, Marcella Di Criscienzo, Anibal Garcia-Hernandez, Bob Gehrz, Steve Goldman, Karl Gordon, Martin Groenewegen, Atefeh Javadi, Olivia Jones, Francisca Kemper, <u>Massimo Marengo</u>, Kristy McQuinn, Ambra Nanni, Joana Oliveira, Giada Pastorelli, Julia Roman-Duval, Philip Rosenfield, Raghvendra Sahai, Karin Sandstrom, Evan Skillman, Sundar Srinivasen, Jacco van Loon, Paolo Ventura, Dan Weisz, Patricia Whitelock, Albert Zijlstra



### AGB Stars Produce Dust

**Dust grains** condense in the winds of thermally pulsating AGB stars and enrich the **interstellar medium** 



AGB stars account for ~75% of the presolar grains found in the Solar System (Hoppe+ 2022) and dominate the dust in the Milky Way (Tielens+ 2005)



Hoppe+ 2022

#### The High Redshift Dust Budget "Crisis"

Are AGB dust production rates (DPRs) high enough to explain the dust masses in high redshift (z>1) submillimeter galaxies?

- Many models predict that metal-poor AGB stars don't produce enough dust *and* at **early enough times** 
  - But this varies heavily by model!
- Possible solutions: supernovae and ISM grain growth
  - Supernovae can **destroy** their dust reservoirs
  - ISM grain growth models need seed particles





#### AGB Star Chemistry Depends on Metallicity





### Groundwork with Spitzer

Spitzer observations of dwarf galaxies show that dust production rate does not depend on metallicity

- On average, these metal poor galaxies have dust producing AGB stars
- Limitations of Spitzer photometry:
  - Unreliable Spitzer [3.6] [4.5] colors to calculate the DPR
  - Little information on the dust features and subsequent mineralogy
  - Relied on variability to identify AGB stars



DUSTiNGS, Boyer+ 2015 (see also Jones+ 2018 and Dell'Agli+ 2019)



#### JWST PID 1619: The AGB Population in Sextans A

- Sextans A:
  - is very metal-poor
    - Gas phase: 12 + log(O/H) = 7.54 (~7% Z<sub>☉</sub>, Kniazev+ 2005)
    - RGB: [Fe/H] = −1.85 (~1-3% Z<sub>☉</sub>, Sakai+ 1996)
  - harbors a large stellar population (Dolphin+ 2003)
  - contains detected ISM dust (Shi+ 2014)
  - is nearby (D~1.4 Mpc, McQuinn+ 2017)
  - has known dusty stars from Spitzer (Boyer+ 2015)
- JWST PID 1619 (PI: M. Boyer)
  - NIRCam & MIRI imaging most of the stellar disk, covering 13 wide and medium band filters (8 NIRCam, 5 MIRI)
  - MIRI LRS spectroscopy (5–14  $\mu m$ ) of six interesting AGB stars found by Spitzer



#### NIRCam MIRI



#### JWST PID 1619: The AGB Population in Sextans A

- Sextans A:
  - is very metal-poor
    - Gas phase: 12 + log(O/H) = 7.54 (~7% Z<sub>☉</sub>, Kniazev+ 2005)
    - RGB: [Fe/H] = −1.85 (~1-3% Z<sub>☉</sub>, Sakai+ 1996)
  - harbors a large stellar population (Dolphin+ 2003)
  - contains detected ISM dust (Shi+ 2014)
  - is nearby (D~1.4 Mpc, McQuinn+ 2017)
  - has known dusty stars from Spitzer (Boyer+ 2015)
- JWST PID 1619 (PI: M. Boyer)
  - NIRCam & MIRI imaging most of the stellar disk, covering 13 wide and medium band filters (8 NIRCam, 5 MIRI)
  - MIRI LRS spectroscopy (5–14  $\mu m$ ) of six interesting AGB stars found by Spitzer





# Spitzer 4.5 µm

# JWST F444W



## Summary and Ongoing Work

- JWST observations of metal-poor nearby galaxies like Sextans A provide insight on the nature of dust production at high redshift
- Preliminary JWST results:
  - We identify ~250 AGB stars in Sextans A and use JWST filters to classify the stars into C and M types
  - JWST reveals dust production in <7%  $Z_{\bigodot}$  metal-poor AGB stars
  - C stars: Spectroscopy and photometry reveal SiC and  $\rm C_2H_2$  features at similar levels seen in the SMC and LMC
  - M stars: Photometric observations of the oxygen-rich stars show possible silicate dust features  $\rightarrow$  suggesting early input of dust in high-z galaxies
- **Ongoing work:** radiative transfer fitting of the SEDs will reveal the DPRs which we will compare to:
  - the dust in the ISM of Sextans A to determine the dominant dust producers
  - high redshift dust yields needed to reproduce the dust masses of submillimeter galaxies



