__ .........
.....
"

M.f UNIVERSITA
%III? DEGLI STUDI
DITRIESTE

Keele
= University

X1V Torino Workshop — June 2024

Stellar evolution and nucleosynthesis
In 3D hydrodynamic models of stars

Federico Rizzuti (Universita di Trieste, IT / Keele University, UK)
with the collaboration of: R. Hirschi, V. Varma, D. Arnett, C. Georgy, C. Meakin, A. Murphy, T. Rauscher



Convective mixing in AGB stars
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* AGB stars have a complex structure:
core, He-shell, intershell, H-shell,
envelope

* They undergo alternating phases of
radiative and convective energCY
transport: thermal pulses, thir
dredge up...

. Mixing is important for the formation
of a 1*C-pocket and consequent s-
process nucleosynthesis

e Still many uncertainties about
convective mixing: what mechanisms
are involved, and how far does
convection penetrate?



Current implementation of convection in 1D

1D prescriptions:

* energy transport in convective o Stable region
zone: mixing length theory (MLT)
(Bohm-Vitense 1958)

« Overshooting / CBM

* boundary location: Y
Schwarzschild or Ledoux / Entrainment ov
criterion

 overshooting/convective :
boundary mixing (CBM): . Convective
penetrative overshoot, region AT

exponential decay diffusion,
entrainment law...




Convective Boundary Mixing (CBM)

dyy = aoymin[Hp, ], Zahn (1991), GENEC D) = e [ — ] . Freytag et al. (1996), MESA
Penetrative Exponential
Same degree o overshoot decay diffusion == Mixing
of mixing decreasing
/ \ CBM / \ exponentially
Extended by implementations X |
fraction of I\/lemg.lcontlr;:ed
pressure scale Ml CI:‘tO
height reached

Entrainment law

M = 4nr?pv,ARi;™, Meakin & Arnett (2007),
GENEC in Scott et al. (2021)



Modelling a 3D box enclosed in / enclosing a star

Advantages:

3D hydrodynamic models | ‘

- deviations from spherical '
symmetry: model fluid instabilities \

e can include multi-D processes |

(convection, rotation, magnetic Disadvantages:
fields)

* no need to assume prescriptions as

in 1D (mixing length theory,
convective boundary mixing) * cannot simulate full star or entire lifetime

* can use 3D data to constrain 1D e difficult to compare results to
parametrization observations

* high computational cost
* limited by fluid dynamical timescales



3D simulations of a burning shell

Modelling a Ne-burning shell of 20 M
star, Z, with PROMPI code:

20.0 1: e 1D MESA model with extra mixing

17.5 ol (expo decay diffusion, Herwig 2000)

=0 1,21 A.« * 3D spherical “box-in-a-star” of r =
L1257 1'8;00 P Pr—— 3.6 —8.5 x 108 cm; angle ~ 26°
§  fuel convection with a 12-isotope

network for Ne-burning

* multiple simulations with different
resolutions and “boosting factors”

* following the shell untill fuel
exhaustion
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Rizzuti et al. (2023)



Convection and fluid motions
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Evolution of the abundances

10016 s 2Ne mass fraction, time = 10016 s 20N e
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Shell evolution and entrainment

 The convective
zone grows with
time, due to
entrainment, until
fuel exhaustion

* Convective
boundaries are

- tracked using the

+w ~ abundances

* The entrainment
rate is strongly
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Computing the entrainment law
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* Entrainment rate can be
parametrized with a simple
law using the “bulk
Richardson number”,
representing the “stiffness”
of the boundary

* We can compare
hydrodynamic simulations
for different burning phases




Implementing entrainment back in 1D models

* Entrainment in 1D stellar
models as replacement for
penetrative overshoot or
diffusive CBM

 Scott et al. (2021) with o \

GENEC for MS convective
core: calibration of 10 -
entrainment parameters
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321D: how we have linked 1D and 3D

L, 1D MESA model 3D hydro model
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Conclusions

e Convective mixing and overshoot affect the structure and evolution of
AGB stars, thus need to be better understood

* The interplay between 1D and 3D stellar models improves our
knowledge of nucleosynthesis and stellar evolution

 Nuclear reactions can be included and studied in the 3D simulations

* We completed the first 3D simulations of an entire burning phase (Ne-
burning shell) measuring convective boundary mixing

* Entrainment can be parametrized, and is approaching convergence
between 1D and 3D

For the future: 3D stellar evolution for more stars and phases, including
3D simulations of AGB stars.
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