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Convective mixing in AGB stars

• AGB stars have a complex structure: 
core, He-shell, intershell, H-shell, 
envelope

• They undergo alternating phases of 
radiative and convective energy 
transport: thermal pulses, third 
dredge up…

• Mixing is important for the formation 
of a 13C-pocket and consequent s-
process nucleosynthesis

• Still many uncertainties about 
convective mixing: what mechanisms 
are involved, and how far does 
convection penetrate?

2

Busso et al. (1999)



Current implementation of convection in 1D

1D prescriptions:

• energy transport in convective 
zone: mixing length theory (MLT) 
(Böhm-Vitense 1958)

• boundary location: 
Schwarzschild or Ledoux 
criterion

• overshooting/convective 
boundary mixing (CBM): 
penetrative overshoot, 
exponential decay diffusion, 
entrainment law…
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𝑑𝑜𝑣 = 𝛼𝑜𝑣𝑚𝑖𝑛 𝐻𝑃, 𝑟𝑐 , Zahn (1991), GENEC 𝐷 = 𝐷0𝑒𝑥𝑝
−2𝑧

𝑓𝐶𝐵𝑀𝐻𝑃
, Freytag et al. (1996), MESA

Entrainment law
Ǘ𝑀 = 4𝜋𝑟2𝜌𝑣𝑐𝐴𝑅𝑖𝑏

−𝑛, Meakin & Arnett (2007), 
GENEC in Scott et al. (2021)
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3D hydrodynamic models

Advantages:

• deviations from spherical 
symmetry: model fluid instabilities

• can include multi-D processes 
(convection, rotation, magnetic 
fields)

• no need to assume prescriptions as 
in 1D (mixing length theory, 
convective boundary mixing)

• can use 3D data to constrain 1D 
parametrization

Disadvantages:

• high computational cost

• limited by fluid dynamical timescales 

• cannot simulate full star or entire lifetime

• difficult to compare results to 
observations

Modelling a 3D box enclosed in / enclosing a star
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Modelling a Ne-burning shell of 20 M⊙

star, Z⊙, with PROMPI code:

• 1D MESA model with extra mixing 
(expo decay diffusion, Herwig 2000)

• 3D spherical “box-in-a-star” of 𝑟 =
3.6 − 8.5 ×  108 cm; angle ~ 26°

• fuel convection with a 12-isotope 
network for Ne-burning

• multiple simulations with different 
resolutions and “boosting factors”

• following the shell untill fuel 
exhaustion

3D simulations of a burning shell
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Vertical slice of the cell: velocity 
magnitude in colour scale.

We can see:

→ At the boundaries, shear mixing 

entrains material from stable zones

Convection and fluid motions

Internal gravity waves 

Convective boundary mixing

7
Rizzuti et al. (2023)



Evolution of the abundances
16O

24Mg

20Ne

28Si
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Reflecting the 
neon burning 
reactions:

     20Ne(γ,α)16O
        20Ne(α,γ)24Mg

     24Mg(α,γ)28Si



Shell evolution and entrainment

• The convective 
zone grows with 
time, due to 
entrainment, until 
fuel exhaustion

• Convective 
boundaries are 
tracked using the 
abundances

• The entrainment 
rate is strongly 
dependent on the 
boosting factor9
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Computing the entrainment law
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• Entrainment rate can be 
parametrized with a simple 
law using the “bulk 
Richardson number”, 
representing the “stiffness” 
of the boundary

• We can compare 
hydrodynamic simulations 
for different burning phases

(Meakin & Arnett 2007)

A  0.01 - 1, n  1

Rizzuti et al. (2023)



Implementing entrainment back in 1D models

• Entrainment in 1D stellar 
models as replacement for 
penetrative overshoot or 
diffusive CBM

• Scott et al. (2021) with 
GENEC for MS convective 
core: calibration of 
entrainment parameters

• A discrepancy: very different 
parameter A  0.01 - 1 in 3D 
vs  10 - 4 in 1D

11Rizzuti et al. (2023)
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321D: how we have linked 1D and 3D
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1D MESA model 3D hydro model

Initial 
conditions

calibrationprescription
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Conclusions

• Convective mixing and overshoot affect the structure and evolution of 
AGB stars, thus need to be better understood

• The interplay between 1D and 3D stellar models improves our 
knowledge of nucleosynthesis and stellar evolution

• Nuclear reactions can be included and studied in the 3D simulations

• We completed the first 3D simulations of an entire burning phase (Ne-
burning shell) measuring convective boundary mixing

• Entrainment can be parametrized, and is approaching convergence 
between 1D and 3D

For the future: 3D stellar evolution for more stars and phases, including 
3D simulations of AGB stars.
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