

MACQUARIE University Research Centre for

Astronomy, Astrophysics & Astrophotonics

MULTIWAVELENGTH STUDY OF CIRCUMBINARY DISKS AROUND EVOLVED BINARY STARS WITH

K. Andrych, D. Kamath, H. Van Winckel, J. Kluska, A. Corporaal, H.M. Schmid

The post-AGB binary system

Adapted from Dullemond & Monnier 2010

2

 $H\alpha$ line time series

Spectroscopy

Infrared interferometry Radio interferometry High resolution imaging and polarimetry

Spectral energy distribution

Ha line time series Talks of Meghna Menon and

Spectroscopy

Infrared interferometry Radio interferometry High resolution imaging and polarimetry

Maksym Mohorian!

Spectral energy distribution

Spectroscopy

Infrared interferometry Radio interferometry High resolution imaging and polarimetry

Maksym Mohorian!

Morphology of the extended diskDust grain sizes and properties

Ertel et al. 2019

Polarisation of the stellar light

Binary star

Unpolarised light

Dust grain

Linearly polarised light

Orientation of polarisation along the disk

Observational data:

Star

Stokes components

Unpolarised

Linearly polarised Circularly polarised

Observations and sample of objects

ZIMPOL: V (554 nm) and I (817.3 nm) bands IRDIS: H (1625 nm) band

- 11 representative post-AGB stars
- 5 with IRDIS and ZIMPOL
- 4 with IRDIS
- 2 with ZIMPOL
- Temperature range: 4250-7250 K
- Orbital period range: 300-2500 days
- Inclination range: 20-80°
- Range of chemical composition and SED

Observations and sample of objects

ZIMPOL: V (554 nm) and I (817.3 nm) bands IRDIS: H (1625 nm) band

- 11 representative post-AGB stars
- 5 with IRDIS and ZIMPOL
- 4 with IRDIS
- 2 with ZIMPOL
- Temperature range: 4250-7250 K
- Orbital period range: 300-2500 days
- Inclination range: 20-80°
- Range of chemical composition and SED

Kluska et. al. 2022, Corporaal et al., 2023

Data reduction for polarimetric observations

Data reduction for polarimetric observations

An example object IRAS08544-4431, I band

Basic reduction

Correction for unresolved polarisation

Image after deconvolution Richardson-Lucy algorithm

Andrych et al. 2023, 2024

Result: variety of complex structures

Andrych et al. 2023

Results: only full discs show clear elliptical disc surface

200

100

-100

-200

-200

Full disks

100

200

Results: dust-metallicity dependence

Andrych et. al. 2023

Results: first direct measurement of the post-AGB disk scale-height

height above the mid-plane \sim 190AU for the separation from the central binary of \sim 1100AU

total height of the disc \sim 90AU detected scattered emission to \sim 250AU

15

Preliminary results: ZIMPOL vs IRDIS

Andrych et. al. 2024 in prep

Multiwavelength case study of IRAS 08544-4431

Multiwavelength results: IRAS 08544-4431

Multiwavelength results: IRAS 08544-4431

Higher inclination and lower extension of the disc with shorter wavelength -> warp in the disk?

Multiwavelength results: IRAS 08544-4431

Presence of forward scattering peak is consistent with the porous dust aggregates of $\sim 1 \mu m$ size and suggest the northern part of the disk being closer to the observer!

Andrych et. al. 2024 in prep

Comparison of post-AGB system IRAS 08544-4431 with protoplanetary disks

Post-AGB system shows relative polarized brightness similar to the brightest PPDs!

Grey polarized disc color is consistent with dust aggregates instead of single monomers!

21

- Disks around post-AGB binaries are quite similar to protoplanetary disks
- Post-AGB binaries can bring important constraints on disk-binary interaction and disk evolution processes (including potential planet formation)
- Polarimetric observations show:
 - Complex morphology of the second-generation circumbinary disks.
 - Polarimetric efficiency of the post-AGB disk similar or higher than of protoplanetary disks
 - Lack of scattered light for some systems could be caused by lower level of dust production during the AGB/RGB phase
 - ✓ Wavelength dependence of the polarimetric disc brightness suggests porous dust aggregates of >1µm size
 - ✓ Signs of warping in the disk
- Combining multi-technique observational data and modelling efforts is essential to build a comprehensive image of these systems!

kateryna.andrych@hdr.mq.edu.au