From the s-process to the i-process: A new perspective on the chemical enrichment of extrinsic stars

Sophie Van Eck; Riano Giribaldi; Thibault Merle; Adrian Lambotte; Drisya Karinkuzhi; Stéphane Goriely; Arthur Choplin; Lionel Siess; Alain Jorissen







EOS The excellence of science

### Intermediate (i-) process: theory

#### Proton injection event in a low-Z AGB model





Choplin+ 2023

### Intermediate (i-) process: abundance measurements

Observationnally:

Hybrid rs pattern found in:

- CEMP-rs
- Higher metallicity [Fe/H] ~ -0.5 C-enriched stars:
  - Cui+ 2014
  - Karinkuzhi+ 2018: HD 100503
  - den Hartogh+ 2022
  - Karinkuzhi+ 2021
  - Karinkuzhi+ 2023



**CEMP-s** 

### Intermediate (i-) process: abundance measurements

Observationnally:

Hybrid rs pattern found in:

- CEMP-rs
- Higher metallicity [Fe/H] ~ -0.5 C-enriched stars:
  - Cui+ 2014
  - Karinkuzhi+ 2018: HD 100503
  - den Hartogh+ 2022
  - Karinkuzhi+ 2021
  - Karinkuzhi+ 2023

Beware of blended and saturated lines:

- 454 000+ Lamost stars analysed with **machine learning** (Norfolk+ 2019)
- High-resolution re-analysis of 15 stars in Karinkuzhi+ 2021
  →1/3 not enriched in Sr



### Characterizing the s, r and i nucleosynthetic processes





Adapted from Martinet+ 2024



### Ba II resonance line at 4554A

Isotopic shifts are too tiny to be detected

But hyperfine splitting is not!

Even and odd isotopes are affected differently by the s, i and r-processes



### 3 test cases:

| Star                                                                                                                         | Previous classification | Source       |                                                   |                                                              | Riano<br>Giribaldi |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|---------------------------------------------------|--------------------------------------------------------------|--------------------|--|
| HD 2454                                                                                                                      | Dwarf Barium star       | Tomkin+1989  |                                                   |                                                              | Giribaldi          |  |
| HD 115444                                                                                                                    | r-process star          | Sneden 2009+ |                                                   |                                                              | 20                 |  |
| HE 2208-1239                                                                                                                 | CEMP r/s                | Hansen+2015  |                                                   |                                                              | Thibault<br>Merle  |  |
| -6.5<br>-7.0<br>-7.5<br>-8.0<br>-7.5<br>-8.0<br>-9.0<br>-9.0<br>-9.0<br>-9.0<br>-10.0<br>-11.0<br>2446000<br>-2450000<br>Hjt | Escorza+201             | 9            | Also in<br>Maria<br>Nick St<br>Richard<br>Jonas R | collaboration with:<br>Bergemann<br>orm<br>d Hoppe<br>Klevas | Arthur<br>Choplin  |  |





# Stellar parameters

• <u>Teff:</u> Wings of (3D NLTE) Halpha fitting (Giribaldi+ 2019,2023, Amarsi 2018)



• <u>Surface gravity:</u> Mg Ib 5171, 5183 triplet fit (Giribaldi+ 2023)

![](_page_8_Figure_4.jpeg)

## Stellar parameters

- Metallicity, microturbulence:
- 1D, Non-LTE Turbospectrum
- (Gerber+ 2023)

![](_page_9_Figure_4.jpeg)

| Star         | T <sub>eff</sub><br>(K) | log g<br>(dex)  | [Fe/H] <sub>NLTE</sub><br>(dex) | [Fe/H] <sub>LTE</sub><br>(dex) | v <sup>NLTE</sup><br>mic<br>(km/s) |
|--------------|-------------------------|-----------------|---------------------------------|--------------------------------|------------------------------------|
| HD 2454      | $6565 \pm 21$           | $4.11 \pm 0.06$ | $-0.21 \pm 0.05$                | $-0.27 \pm 0.05$               | $1.60 \pm 0.20$                    |
| HD 115444    | $4667 \pm 86$           | $1.28\pm0.15$   | $-2.97 \pm 0.08$                | $-3.11 \pm 0.10$               | $1.40 \pm 0.15$                    |
| HE 2208-1239 | $5200 \pm 75$           | $2.14\pm0.15$   | $-2.40\pm0.09$                  |                                | $0.85\pm0.20$                      |

### Barium abundance

#### Subordinate lines:

![](_page_10_Figure_2.jpeg)

**Resonance lines:** 

Problem: Abundance offset between resonance and subordinate lines (0.7 dex higher)

![](_page_10_Figure_5.jpeg)

Hypothesis: A(Ba)=A(Ce)

### Ba resonance line

HD 2454 (s-process star)

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_3.jpeg)

### Ba resonance line

HD 115444 (litt: r-process star)

#### HE 2208-1239: (litt: CEMP-r/s star)

![](_page_12_Figure_3.jpeg)

![](_page_13_Figure_0.jpeg)

### Comparing nucleosynthesis diagnostics

![](_page_14_Figure_1.jpeg)

| distance distance                                                                 |           |
|-----------------------------------------------------------------------------------|-----------|
| Litt: s-process HD 2454 0.83 0.90 1.38 1.56 17 <sup>+1−17</sup> → s               | s-process |
| Litt: r-process HD 115444 0.00 0.14 4.46 2.35 66 <sup>+33−35</sup> → r            | r-process |
| Litt: CEMP-r/s HE 2208-1239 0.56 0.80 13.14 2.05 $100^{+0-36} \rightarrow i^{-1}$ | -process  |

![](_page_15_Figure_0.jpeg)

ESA/Gaia/DPAC-CU8, Recio-Blanco and the GSP-Spec team

### Extrinsic stars in Gaia?

Contursi+ 2022: Cerium from Gaia RVS

Kiel diagram of the stars with reliable Ce abundance

![](_page_16_Figure_3.jpeg)

# Extrinsic stars in Gaia?

![](_page_17_Figure_1.jpeg)

Kiel diagram for 28 613 stars with the recommended flag selection

### Cerium Abundance check

Gaia RVS spectra

### Comparison between extrinsic and control **twins** (similar stellar parameters)

| Reliable Cerium (Contursi+22)<br>and 4500K < T <sub>eff</sub> < 6000K |                 |  |  |
|-----------------------------------------------------------------------|-----------------|--|--|
| « Extrinsic »                                                         | Control         |  |  |
| [Ce/Fe]>0,6 dex                                                       | [Ce/Fe]<0,3 dex |  |  |
| 82 stars                                                              | 4161 stars      |  |  |

![](_page_18_Figure_4.jpeg)

![](_page_18_Figure_5.jpeg)

![](_page_19_Figure_0.jpeg)

 $\rightarrow$  Determination (1D, LTE, MARCS model atmospheres, Gaia parameters) C,  $^{12}C/^{13}$  C, N, Fe Nb, Zr, La, Ba, Ce, Eu

### Cerium Abundance check

#### Too high Cerium abundances when

- high N abundance
- high metallicity

![](_page_20_Figure_4.jpeg)

### Extrinsicity of the truly enriched objets:

# 1. Correlation between [C/Fe] and [s/Fe]

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

### Extrinsicity of the truly enriched objets:

### 4. Binarity

|                   |                                                    | Extrinsic sample proportion (%) | Extrinsic sample<br>number<br>(Total : 82 stars) | Reference sample<br>proportion (%) | Reference sample<br>number<br>(Total : 4161 stars) | Golden sample<br>proportion (%) | Golden sample<br>number<br>(Total : 28 stars) |
|-------------------|----------------------------------------------------|---------------------------------|--------------------------------------------------|------------------------------------|----------------------------------------------------|---------------------------------|-----------------------------------------------|
| Variable          | Yes                                                | $45.12 \pm 5.49$                | $37 \pm 4.51$                                    | $14.59 \pm 0.55$                   | $607 \pm 22.77$                                    | $57.14 \pm 9.35$                | $16 \pm 2.62$                                 |
| radial            | No                                                 | $51.22 \pm 5.52$                | $42 \pm 4.53$                                    | $80.72\pm0.61$                     | $3359 \pm 25.45$                                   | $39.29 {\pm} 9.23$              | $11{\pm}2.58$                                 |
| velocity          | Undetermined                                       | $3.66\pm0.23$                   | $3\pm0.19$                                       | $4.69\pm0.33$                      | $195\pm13.64$                                      | $3.57{\pm}0.68$                 | $1 \pm 0.19$                                  |
| Gaia              | Non binary<br>(NSS=0)                              | $69.51 \pm 5.08$                | $57 \pm 4.17$                                    | $88.18 \pm 0.50$                   | $3669 \pm 20.83$                                   | $46.43 \pm 9.42$                | $13 \pm 2.64$                                 |
| binarity<br>flags | Astrometric<br>binary (NSS=1)                      | $10.98 \pm 3.45$                | $9 \pm 2.83$                                     | $3.58\pm0.29$                      | $149 \pm 11.98$                                    | $17.86 {\pm} 7.23$              | $5 \pm 2.02$                                  |
|                   | Spectroscopic<br>binary (NSS=2)                    | $9.76 \pm 3.28$                 | $8 \pm 2.69$                                     | $5.19\pm0.34$                      | $216 \pm 14.31$                                    | $17.86 {\pm} 7.23$              | $5 \pm 2.02$                                  |
|                   | Astrometric and<br>spectroscopic<br>binary (NSS=3) | $9.76\pm3.28$                   | $8 \pm 2.69$                                     | $3.05\pm0.27$                      | $127 \pm 11.09$                                    | $17.86 \pm 7.23$                | $5 \pm 2.02$                                  |
| re-normalized     | $RUWE \ge 1.4$                                     | $41.46 \pm 5.44$                | $34 \pm 4.46$                                    | $16.46 \pm 0.57$                   | $685 \pm 23.92$                                    | $50.00 \pm 9.45$                | $14{\pm}2.65$                                 |
| $v_r$ error       | RUWE<1.4                                           | $58.54 \pm 5.44$                | $48 \pm 4.46$                                    | $83.49 \pm 0.58$                   | $3474 \pm 23.95$                                   | $50.00 \pm 9.45$                | $14 \pm 2.65$                                 |
| Union of all b    | inarity indicators                                 | $52.44 \pm 5.51$                | $43 \pm 4.52$                                    | $21.68 \pm 0.64$                   | $902 \pm 26.58$                                    | $62.50 \pm 9.15$                | $18 \pm 2.56$                                 |

**Binarity:** 

Extrinsic 52%

Control: 22%

Golden sample: 63%

### Extrinsicity of the truly enriched objets:

### 4. Height above the galactic plane

| Extrinsic            | Control sample      |  |  |
|----------------------|---------------------|--|--|
| 149,64 <u>+</u> 2,01 | 82,37 <u>+</u> 0,89 |  |  |

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_4.jpeg)

#### Conclusions:

- Isotopic diagnostics are feasible but except for some stars with weak lines, 3D NLTE is recommended
- Hidden treasures of extrinsic stars in large surveys

#### Perspectives:

- Isotopic ratio: comparison 1D/3D NLTE
- Completing existing Ba and CEMP star catalogues with Gaia and other large surveys (use machine learning with precaution)
- Candidate i-process stars from Gaia RVS