The effects of induced magnetic mixing in AGB stars

D. Vescovi & S. Cristallo

INAF - Osservatorio Astronomico d'Abruzzo

OUTLINE

- **PAST: FRUITY AGB models**
- PRESENT & FUTURE: Magnetic AGB models
- Comparison to observations:
 - **1. Presolar Grains**
 - 2. Ba-stars
 - 3. S-stars
 - 4. C-stars
 - 5. Post-AGB stars

Proton number

s process

Neutron number

Proton number

Neutron number

Neutron number

F.R.U.I.T.Y. FUll-Network Repository of Updated Isotopic Tables & Yields

SC+ 2011,2015

fruity.oa-abruzzo.inaf.it

-2.85 ≤ [Fe/H] ≤ +0.3

$1.3 \le M/M_{sun} \le 6.0$

OBSERVATIONS (physics)

Luminosity Function of C-stars

Initial-to-final mass relations

SC+ 2011

OBSERVATIONS (spectroscopy)

Second to first s-process peak

Third to second s-process peak

SC+ 2011

[ls/Fe]= [Sr,Y,Zr/Fe] [hs/Fe]= [Ba,La,Ce,Nd/Fe] [hs/ls]=[hs/Fe]-[ls/Fe]

Comparison to solar distribution

Prantzos+ 2020

AGB stars and presolar SiC grains

SiC Grains

The disagreement between presolar SiC data and models is evident!

The ¹³C pocket in stellar evolutionary models

Opacity induced overshoot (SC+2009)
Convective Boundary Mixing + Gravity Waves (Battino+ 2017)
Magnetic-induced mixing (Vescovi+2020)

How does the ¹³C pocket change?

 Rotation-induced mixing (Herwig+ 2003; Siess+ 2004; Piersanti+ 2013)

Our working hypothesis: magnetic induced mixing

Nucci & Busso 2014

A magnetized stellar plasma in the quasi-ideal MHD regime, with a density distribution closely following a power law as a function of the radius ($r \propto r^k$, with k<-1), reaches a dynamic equilibrium and is in radial expansion.

In strong field regimes, the magnetic field tends to concentrate in flux tubes. As a consequence of the magnetic extra-pressure, these tubes are buoyant (see, e.g., Parker 1955).

 $p(z) = p_i(z) + B^2/8\pi$

Due to the effect of the magnetic buoyancy, a matter flow is pushed from the He-intershell to the envelope. This, in turn, induces a downflow flux, in order to guarantee mass conservation.

Magnetic ¹³C-pocket vs FRUITY ¹³C-pocket

SiC Grains

- **Magnetic** contribution account for SiC data!!
- Best fit for $u_p = 5 \times 10^{-5}$ cm/s and $B_{\omega} = 5 \times 10^4$ G

WHAT'S NEXT?

- Ba stars (extrinsic AGBs)
- C-stars
- S-stars
- Post-AGB stars

The origin of magnetic fields in stars

Still largely debated topic:

- 1. fossil relics in stably stratified radiative regions (inherited from previous evolutionary phases);
- 2. dynamo-generated in turbulent convective layers.

Since the time-scale for ohmic decay of a large-scale field is typically longer the star's lifetime, the radiative regions may be regarded as perfectly conducting and the magnetic field is then "frozen" into the plasma.

During a Thermal Pulse, <u>turbulence</u> leads to rapid reconnection that dissipates any large-scale coherent field. <u>HOWEVER</u>, convection, rotation, and shear within the convective region will regenerate the field through dynamo action: numerical simulations suggest that convective layers are site of very efficient small-scale dynamos.

BUT: we are interested in a axisymmetric toroidal magnetic field.

The origin of magnetic fields in stars

Such a field could be achieved through the stretching of a preexisting low-magnitude poloidal field in the radiative zone below the convective envelope after the quenching of a thermal pulse, via the action of <u>differential rotation</u> around the rotation axis.

$B_{\varphi} \sim B_{\rm p}(\Omega q \Delta t) q = \partial \ln \Omega / \partial \ln r \quad \mathbf{B}_{\rm P} \approx 5 \, \mathbf{G} \rightarrow \mathbf{B}_{\varphi} \approx 5 \mathrm{x} 10^4 \, \mathbf{G}$

Artificial viscosity added to match asteroseismic data (e.g. Den Hartogh+2019).

The origin of magnetic fields in stars

Such a field could be achieved through the stretching of a preexisting low-magnitude poloidal field in the radiative zone below the convective envelope after the quenching of a thermal pulse, via the action of <u>differential rotation</u> around the rotation axis.

$$B_{\varphi} \sim B_{\rm p}(\Omega q \Delta t) q = \partial \ln \Omega / \partial \ln r \ \mathbf{B}_{\rm P} \approx 5 \ \mathbf{G} \rightarrow \mathbf{B}_{\varphi} \approx 5 \mathbf{x} 10^4 \ \mathbf{G}$$

Artificial viscosity added to match asteroseismic data (e.g. Den Hartogh+2019).

Cseh+18 De Castro+16 Pereira+11 Roriz+21a Roriz+21b

 $3 M_{\odot}$

Cseh+18 De Castro+16 Pereira+11 Roriz+21a Roriz+21b

 $3 M_{\odot}$

2 M_o
2.5 M_o
Shetye+18
Shetye+19
Shetye+20
Shetye+21

0.3 < C/O < 1.0

0.3 < C/O < 1.0

1

0

 $\log \epsilon (^{99}\mathrm{Tc})$

2

0.3 < C/O < 1.0

Tc is freshly produced by TDU [Merrill 1952]

C-stars

--

[Fe/H] = 0

Abia+02 Abia+09 Abia+10 Abia+19

C/O > 1.0

C-stars

C/O > 1.0

De Smedt+15 De Smedt+16 ls & hs

De Smedt+15 De Smedt+16

ls & hs

ls & hs

De Smedt+15 De Smedt+16

Pb

Pb

NLTE effects on Pb I @ low Z?

New Magnetic AGB yields

s, i & r Element Nucleosynthesis (sirEN) CONFERENCE

Giulianova (Italy), 8-13 June 2025

Finanziato dall'Unione europea NextGenerationEU

EUROPA

