The Galactic Chemical Evolution of Mg-(and Si-) Isotopic Compositions Inferred from Presolar Silicate Grains

Peter Hoppe & Jan Leitner The 14th Torino Workshop on AGB stars June 10-14, 2024

Introduction (I)

Presolar Grains

- Primitive meteorites contain small quantities (ppb to per mill) of refractory dust grains with highly anomalous isotopic compositions
- First hints on the presence of meteoritic minerals with highly anomalous isotopic compositions in the 1960s
- Separation of SiC as carrier of anomalous noble gas components in the 1980s
 - \rightarrow Presolar origin

Introduction

Summary

FÜR CHEMIE

Mg Si

 \rightarrow Stardust (presolar grains)

Introduction (II)

Introduction Mg Si Summary

Presolar Grains: Path from Stars to the Laboratory

Introduction (III)

Presolar Silicates

Silicates are the most abundant group of presolar (stardust) grains

Introduction

Summary

JR CHEMIF

Mg Si

- Can be identified only in situ by ion imaging techniques, preferentially in the NanoSIMS
- Typical sizes of 150 nm, only a small fraction has sizes >300 nm
- For a long time useful isotope data existed mostly only for O (Cs ion source, <100 nm resolution) because in situ studies of electropositive elements (e.g., Mg) with the Duoplasmatron O ion source were limited to 300 nm spatial resolution
- New Oregon Physics Hyperion O ion source now permits in situ studies of electropositive elements with a spatial resolution comparable or even better than with the Cs ion source

Introduction (IV)

The NanoSIMS Ion Probe

Introduction (V)

Introduction Mg Si Summary

 Focused O⁻ ion beam (<100 nm) was rastered over 2 x 2 μm²sized area around the presolar silicate grain

Introduction (VI)

O-Isotopic Systematics of O-Rich Presolar Grains

Introduction Mg Si Summary

MAX-PLANCK-INSTITUT FÜR CHEMIE

Data from WU PSG Database; Hynes & Gyngard 2009

- 4 distinct O Isotope groups
- **Group 1 (80%)**:
 - Low-mass AGB stars
 - SNe, supergiants, intermediate-mass AGB stars
- Group 2:
 - Intermediate-mass AGB stars with HBB
 - SNe, supergiants, super AGB stars
- Group 3:
 - Low-mass, low metallicity AGB stars
 - SNe
- Group 4 (10%):
 - SNe

Mg-Isotopic Systematics (I)

Introduction Mg Si Summary

MAX-PLANCK-INSTITU' FÜR CHEMIE

Hoppe P. et al. 2021, ApJ, 913,10; MPIC 2024, unpub.

- Magnesium Isotopes of Group 1 Silicates
 - 4 distinct subpopulations of Group 1 grains
 - Normal (60%):
 - Low-mass AGB stars
 - ²⁵Mg-rich (25%):
 - At least 50% from SNe
 - Intermediate-mass, high metallicity AGB stars
 - ²⁶Mg-rich & ²⁵Mg-poor (15%):
 - Supergiants
 - SNe
 - SNe/supergiants contribution (Groups 1-4) >30%

Mg-Isotopic Systematics (II)

Normal Group 1 Silicates

- Mg isotopes plot along slope ~1 line (δ²⁵Mg = 0.84±0.05 x δ²⁶Mg + 3±4), the Mg mainstream line, which likely represents GCE
- Origin from low-mass AGB stars
 - O-isotopic signatures
 - Only small Mg isotope anomalies expected according to stellar models (e.g., Karakas & Lugaro 2016)
- Si-isotopic compositions supports GCE intepretation

Mg-Isotopic Systematics (III)

Introduction Mg Si Summary

0...

FÜR CHEMIE

Si-Isotopic Systematics (I)

Introduction Mg Si Summary

FÜR CHEMIE

Silicate Si Mainstream Line

- Normal Group 1 silicate grains plot along a line δ²⁹Si = (1.34±0.09) x δ³⁰Si - (0±7), the "Silicate Si mainstream line"
- Same slope as SiC Si mainstream line but shifted by 14±5 ‰ to ³⁰Si-poor side
 - Overprint of s-process Si from 3. DUP in low-mass AGB stars in SiC Si mainstream line
 - Silicates form before SiC, when DUP of s-process matter is less efficient
 - Silicate Si mainstream line may be a better proxy for GCE

Si-Isotopic Systematics (II)

Introduction Mg Si Summary

MAX-PLANCK-INSTITU" FÜR CHEMIE

GCE of Mg & Si

- δ²⁵Mg and δ²⁹Si of normal Group 1 silicate grains are correlated along a slope ~1 line
- Support for GCE interpretation of Mg and Si in normal Group 1 silicates

Summary (I)

- Based on Mg-isotopic compositions, O isotope Group 1 grains (majority of presolar silicates) can be divided into 4 subpopulations: Normal (60%), ²⁵Mg-rich (25%), ²⁵Mgpoor (5%), and ²⁶Mg-rich (10%)
- Stellar sources:
 - Normal Group 1 grains: Low-mass AGB stars
 - ²⁵Mg-rich, ²⁵Mg-poor, ²⁶Mg-rich grains: SNe, supergiants, intermediate-mass AGB stars with super-solar metallicities

Summary (II)

- Normal Group 1 grains show imprints of GCE in Mg and Si isotopes
 - Mg- and Si-isotopic compositions fall along linear arrays in threeisotope plots ("mainstream lines")
 - Silicate Mg mainstream line has a slope 0.84±0.05
 - Silicate Si mainstream line has a slope 1.34±0.09, i.e., identical to that of SiC mainstream grains, but is slightly shifted to ³⁰Si-poor side of SiC Si mainstream line by 14±5 ‰ and may be a better proxy for the GCE of Si isotopes
 - Mg and Si isotopes are correlated which gives further support for the GCE interpretation of Mg- and Si-isotopic compositions

