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Figure 1. Effect of fluctuations in the excess radio background on the cosmic dawn 21-cm signal from z = 22. We compare the case of a uniform radio
background (left) to a case where the radio background is emitted by galaxies (right). Both models have the same mean intensity of the radio background.
Astrophysical model parameters are: Vc = 35 km s−1, f∗ = 0.4, fRadio = 1000. The X-ray and reionization parameters are irrelevant here as, for this example,
we focus only on the coupling transition, before the contributions of heating and ionization are significant. Each panel shows the corresponding 21-cm signal
projected in the direction perpendicular to the image. The projected signal is obtained by taking the minimum value along each column of the cubic simulation
box.

emission from these galaxies enhances the contrast between the spin
temperature and the radiation temperature inside the same coupled
bubbles, which results in a stronger 21-cm absorption compared to
the case with a uniform radio background of intensity equal to the
mean intensity of the fluctuating case.

An illustration of this is shown in Fig. 1, where we compare
the complete model (right-hand panel) to a reference case with a
uniform radio background of the same mean intensity (left-hand
panel). In the reference case, we can still see the coupled bubbles
in the 21-cm signal, but their contrast is greatly enhanced in the
full model, in which the radio enhancement is clustered around the
galactic haloes. To highlight the effect of the radio fluctuations, we
have used a simulation with moderately massive haloes (minimum
circular velocity of 35.5 km/s, corresponding to a minimum halo
mass for star formation of 3 × 108 M$ at z = 20) along with a high
value of the radio production efficiency fRadio = 1000.

The effect of the radio background fluctuations on the statistical
properties of the 21-cm signal, namely its power spectrum, is shown
in Fig. 2 for various values of fradio and two different (soft and hard)
X-ray SEDs. Here, we choose fairly high values of fRadio to highlight
the effects, while models with lower values of fRadio are explored in
the next section. We also show two limiting cases: the CMB-only
case (i.e. the case with fRadio = 0) and the ‘maximum radio’ case.
As we can see from equation (5), in the limit TRadio % TCMB, TK the
effect of the radio background saturates and the 21-cm brightness
temperature becomes independent of TRadio:

T21 = −26.8
(

1 + z

10

)1/2

(1 + δ)xHI xtot(TCMB)
TCMB

TK
mK, (15)

where xtot(TCMB) is the coupling coefficient calculated with Trad =
TCMB (and we have suppressed the dependence on cosmological

Figure 2. The 21-cm power spectrum at k = 0.1 Mpc−1 as a function of
redshift for various values of fradio (as indicated in the legend) and for two
different X-ray SEDs: soft (νmin = 0.1 keV/h, top) and hard (νmin = 1 keV/h,
bottom). The values of the other parameters are fixed: Vc = 16.5 km s−1, f∗
= 0.1, fX = 1, α = 1. We show the full, fluctuating radio background from
galaxies (solid) compared to the corresponding smooth radio background
with the same mean radio intensity at each redshift as in the fluctuating case
(dashed). We also show a case with no excess radio background (i.e. the
CMB-only case, black dotted line) and the ‘maximum radio’ limit (see text,
grey dotted line). Finally, we also show the SKA1 noise curve (magenta)
assuming a single beam, integration time of 1000 h, 10-MHz bandwidth, and
bins of width $k = k.
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Early History

Reionization: 
Gunn & Peterson 1965

21-cm Cosmology: 
Hogan & Rees 1979: Basic ideas (ρ, T, Ts) 
Scott & Rees 1990: CDM + reionization 

Madau, Meiksin & Rees 1997: Cosmic Dawn (Ly-  and heating) 

Observational prospects: 
Shaver, Windhorst, Madau, de Bruyn 1999 
Tozzi, Madau, Meiksin & Rees 2000 
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Early History

Santos, Cooray, Haiman, Knox & Ma 2003: CMB & reionization 
(kSZ): Reionization patch R = 0.1 Mpc 

Miralda-Escudé, Haehnelt, & Rees 2000:: “In an inhomogeneous 
universe reionization occurs outside-in, starting in voids and 
gradually penetrating into overdense regions.” 

Ciardi, Stoehr, & White 2003: 30 Mpc, field vs. proto-cluster

  
Gnedin 2000 
6 MpcReionization: 
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Fig. 14.1 Cosmic 1 − σ scatter in the redshift of reionization, or any other phenomenon that
depends on the fraction of gas in galaxies, versus the size of a rectangular region (in the Universe or
in a simulation). When expressed as a shift in redshift, the scatter is predicted to be approximately
independent of the typical mass of galactic halos. Regions of size 10 Mpc are not representative
and do not yield an overall picture of reionization, since different regions of that size reionize at
redshifts that differ by a 1 − σ scatter of ∆z ∼ 1. One hundred Mpc boxes are required in order
to decrease ∆z to well below unity (∼ 0.15). From [29].

Mpc during the main stages, and allowed an estimate of the resulting 21-cm power
spectrum during reionization. This picture of reionization based on semi-analytic
models [29, 116] was then confirmed by several numerical simulations that reached
sufficiently large scales with boxes of ∼ 100 Mpc in size (e.g., [151, 246, 317]). The
simulations indeed showed the dominance of large bubbles due to large groups of
strongly-clustered galaxies, though it should be noted that the price of such large
boxes was (and remains) a limited ability to resolve the small galaxies that were
likely the dominant sources of reionization.

This realization, that reionization was characterized by strong fluctuations on
large scales even if the individual galaxies that caused it were small, has been very
important and influential. It has helped motivate the large number of observational
efforts currently underway in 21-cm cosmology (Chap. 10), since large-scale fluc-
tuations are easier to detect [as they do not require high angular resolution; see
Eq. (12.34)].

Today there remain some major uncertainties about reionization that will likely
only be resolved by 21-cm measurements (Sec. 15.1). In terms of the overall timing,
the best current constraint comes from large-angle polarization measurements of the
CMB which capture the effect of the re-scattering of CMB photons by the reionized
IGM. The latest measured optical depth of 5.5 ± 0.9% [6] implies [Sec. 4.8.5] a
reionization midpoint at a redshift of 7.5 − 9 in realistic models (with reionization
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Barkana & Loeb 2004: “the 
recombination rate is higher in 
overdense regions… these regions 
still reionize first … since the 
number of ionizing sources is 
increased even more strongly” 
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dark matter parameters Q and mm, fixing the CDM
mass at mC = 100MeV and also fm = 10�4. We choose
the maximal coupling between mDM and CDM, permit-
ting both tight coupling between mDM and baryons be-
fore recombination, and a su�ciently small drag on the
baryonic fluid to avoid CMB power spectrum constraints
([28, 63], also see Appendix C of Ref. [29]). We integrate
the di↵erential equations governing the properties of the
mDM, CDM and baryon fluids starting from photon de-
coupling at z = 1010, for various initial bulk velocities
vbC, ultimately obtaining Tb(Q,mm; vbC; z).

Astrophysics Modeling: To relate Tb(Q,mm; vbC, z)
from our model to a value of T21(Q,mm; vbC, z) through
Eqs. (1) and (2), we need an astrophysical model for the
Ly↵ and X-ray radiation fields. Ly↵ photons determine
the coupling of TS to Tb in Eq. (2), while both Ly↵ and
X-ray photons lead to IGM heating, partially counteract-
ing cooling by mDM. To determine both of these e↵ects,
we rely on a large-scale, semi-numerical 21-cm code based
on Refs. [52, 60, 69]. In this Letter, we aim to highlight
the discovery potential of the two-fluid dark sector model
in the 21-cm power spectrum; we therefore account for
the minimal e↵ect of realistic astrophysical models. This
contrasts with the typically-adopted simplistic approach
that derives the maximum possible signal by assuming
no astrophysical heating together with full Ly↵ coupling
(i.e., xtot,e↵ ! 1); in practice, this limit is not possible,
since strong Ly↵ coupling brings along with it signifi-
cant heating, thus narrowing the range of possible 21-
cm signals [52]. We use an ensemble of 140 realistic as-
trophysical models from the semi-numerical simulations,
chosen to minimize astrophysical heating and maximize
Ly↵ coupling. As shown below, we must use an ensem-
ble since the astrophysical model that gives the maximum
absorption of T21 depends on the DM parameters and on
redshift. Further details on the simulations and the as-
trophysical parameters are discussed in the Supplemental
Material.

As we focus on models with subdominant X-ray heat-
ing, the dominant process counteracting dark cooling
is Ly↵ heating. Ly↵ heating results from scattering
of Ly↵ photons, either directly from atomic recoil [70–
72], or by mediating heat transfer from the CMB to the
baryons [73]. From each simulation, we obtain the spa-
tially averaged baryon temperature TA

b
(z), with A index-

ing the 140 astrophysical models. To account for astro-
physical heating in our calculations we define the excess
heating as �T

A
b
(z) ⌘ T

A
b
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b
(z), where T

0

b
(z) is the

⇤CDM prediction for the baryon temperature in the ab-
sence of heating. The final baryon temperature is then

T
A
b
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A
b
(z) (4)

for each astrophysical model. The second ingredient we
obtain from each simulation is the average e↵ective cou-
pling x

A
tot,e↵

(Tb; z) from the spatially averaged Ly↵ radi-

ation field. TA
21
(Q,mm; vbC; z) is then determined by sub-

stituting x
A
tot,e↵

(Tb; z) into Eq. (2) together with Eq. (4).

Note that we have ignored spatial variations in �T
A
b
,

as well as in the Ly↵ radiation field, using only their
mean values, and thus leaving the dependence of Tb on
vbC as the only source of fluctuations. While a fully
self-consistent treatment including astrophysical heating
and dark cooling would account for all spatial variations
concurrently, the simplified prescription presented here
is computationally much more feasible, and is a reason-
able approximation within the parameter range of inter-
est, for which the e↵ect of velocity fluctuations strongly
dominate.

Bulk relative velocity: In the two-fluid interacting
dark-sector model, the fluctuations of T21 are set pri-
marily by the dependence of the baryon temperature on
vbC. This correlates the spatial variations of T21 (at any
redshift), to those of vbC at z ⇠ 1010, assuming that any
other sources of such fluctuations are subdominant.
Since the drag between the baryons and CDM is small,

vbC at recombination is as it is in the ⇤CDM paradigm: a
Gaussian random field with a power spectrum Pv(k) de-
fined through hṽbC(k)ṽbC(k0)i = (2⇡)3�(3)(k+ k0)Pv(k),
where k̂ṽbC(k) ⌘ ṽbC(k), the Fourier transform of
vbC(x). Pv(k) exhibits the characteristic acoustic oscil-
lations in k [3].
Under our assumption that the spatial fluctuations of

T21 are dominated by its dependence on vbC, the global
signal is evaluated as

hT21i =
✓

3

2⇡v2
rms

◆3/2 Z
d
3vbC T21(vbC) exp

✓
� 3v2

bC

2v2
rms

◆
.

(5)

Similarly, the T21 2PCF is given by

⇠T21(x) =

Z
d
3vbC,a

Z
d
3vbC,b

⇥ P(vbC,a,vbC,b;x)�T21(vbC,a)�T21(vbC,b) , (6)

where P (vbC,a,vbC,b;x) is the joint PDF of 3D bulk rel-
ative velocities at points a and b separated by vector x.
Since vbC is a Gaussian random field, P is completely
specified by Pv(k). In the Supplemental Material, we
specify the exact structure of P, and explain the details
of our computation of ⇠T21 . In particular, we improve on
previous results [58, 74] by reducing the 6D integral in
Eq. (6) to a 3D integral instead of a 4D one, making the
integral much easier to evaluate numerically. The power
spectrum is then calculated through Eq. (3).

Results: Figure 1 shows the predicted hT21i and �2

21
for

comoving wavenumber k = 0.13Mpc�1 for the two-fluid
interacting millicharged DM model with mm = 3GeV,
for a range of Q values that are viable given current con-
straints. To indicate the most easily observable models,
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Figure 9. Same as Fig. 1 (top panel) and Fig. 7 (bottom panel) in the main text.

Figure 10. Same as Fig. 4 in appendix.
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Early radio background: Line-of-sight effect

Sikder, Reis, Barkana & Fialkov 2023

Line-of-sight radio fluctuations 5

Figure 1. Line-of-sight e�ect of fluctuations in the excess radio background on the cosmic dawn 21-cm signal from I = 20. We compare the case of a fluctuating
radio background (left panel) from our previous work to the line-of-sight contribution of the fluctuating radio background emitted by galaxies (middle panel).
The 21-cm slice perpendicular to the line-of-sight has also been shown (righ panel). Both models have the same radio production e�ciency. Astrophysical
model parameters are: +2 = 16.5 km s�1, 5⇤ = 0.1, 5Radio = 3000. As for this example, we show the 21-cm slices from I = 20, when the heating and ionization
are insignificant, the X-ray and reionization parameters are irrelevant here. Left and middle panels show the 21-cm slices in the direction perpendicular to the
image. The right panel shows the 21-cm slice of the same cubic simulation box along the direction perpendicular to the line-of-sight.

Ly-U fluctuations along with some contributions from the density
fluctuations. As the radio fluctuations considered in this work, are
assumed to be originated from the high redshift radio sources such
as star forming galaxies, there is a positive correlations between the
radio fields and both the Ly-U fluctuations and density fluctuations.
So the radio emission from these galaxies results in an enhancement
in the 21-cm brightness temperature during the coupling transition.
When we consider the line-of-sight radio background, the contribu-
tions from the radio sources add up along the line-of-sight direction
resulting a significant boost in the contrast between the spin temper-
ature and the radiation temperature.

To understand the e�ects of the LoS radio fluctuations on the
21-cm signal, we use a high value of radio production e�ciency,
5R = 3000 and low mass halos with a minimum circular velocity
(+⇠ ) of 16.5 km/s corresponding to the minimum halo mass for star
formation of 3 ⇥ 107"� at I = 20.

Due to the positive correlation between the contributions from the
radio fluctuations and the Ly-U coupling and the density field, the
radio fluctuations boost the 21-cm power spectrum at high redshifts
and when we consider the line of sight component of the radio
fluctuations, the enhancement in the power spectrum becomes much
more pronounced up to a factor of 10 at redshifts prior to the onset
of X-ray heating. The enhancement in the 21-cm power spectrum is
shown in Fig. 2 for two di�erent values of wavenumber. Here we
also show the case without excess radio background, i.e, CMB only
case with 5Radio = 0 (dotted black line in both panels). Note that
the line of sight consideration of the uniform radio background has
no special feature compared to the uniform radio background used
in the previous work. So throughout this paper, the power spectrum
due to the uniform radio background has been shown for this work
only (dashed blue line). The heating fluctuations are anti-correlated
with 21-cm fluctuations from all the other sources meaning that once
the X-ray photons emitted from the first generation of stars and X-
ray sources heat up the IGM, this heating mechanism reduces the
21-cm fluctuations as long as the gas is cooler than the background
radiation temperature. X-ray photons with lower energies (⇠ 0.5 keV)

are absorbed locally, while the hard X-ray photons which are more
energetic (& 1 keV) lose their energy due to the redshift e�ect as
they have such a long mean free path that some of them are not
absorbed even by the end of reionization. As a result, hard X-ray give
rise to mild fluctuations on large scale (& 100 Mpc). So the heating
fluctuations are weaker for hard X-ray SED compared to the soft
X-ray SED. In presence of a su�ciently strong radio background,
the heating peak disappears. Instead we see a single over all peak at
the intermediate redshifts between Ly-U and the X-ray heating peak
(occurring in the CMB only case). When we consider the LoS radio
fluctuations, this over all peak gets a significant boost which is by a
factor of 10 approximately at the intermediate redshifts between LyU
coupling and heating transition.

In case of the soft X-ray SED, strong heating fluctuations dominate
over the fluctuations imprinted by the radio background resulting
a clear heating peak in the 21-cm power spectrum. However, the
height of peak due to the radio fluctuations di�ers compared to the
uniform radio case (with the same mean intensity). Though with
the radio fluctuations the heating peak shifts towards lower redshift
compared to the case without excess radio (CMB only). This is
because in presence of excess radio fluctuations, kinetic temperature
needs more time to get closer to the radiation temperature (at the
heating peak, )K = )CMB + )radio). Interestingly, when we take into
account the LoS radio fluctuations, fluctuations imprinted by the LoS
radio background become strong enough compared to the heating
fluctuations and ends up washing out the heating peak from the
power spectrum and producing a single over all peak at redshift that
is intermediate to the Ly-U and the heating peak (occurring in the
radio fluctuations without LoS case) as can be clearly seen in the top
panel of Fig. 3. The general trend is that when the Ly-U fluctuations
dominate, the radio fluctuations and hence it’s LoS components start
to enhance the 21-cm power spectrum and wash out the heating peak
for both cases of X-ray SEDs (heating peak for the soft X-ray SED
only vanishes due to the LoS radio fluctuations) and have a reduced
e�ect towards the EoR due to the saturation of the fluctuations from
the radio sources.

MNRAS 000, 1–11 (2022)
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Figure 1. Line-of-sight e�ect of fluctuations in the excess radio background on the cosmic dawn 21-cm signal, illustrated at I = 20. We compare the case of
a fluctuating radio background from our previous work (left two panels) to the full calculation including the LoS e�ect of the fluctuating radio background
emitted by galaxies (right two panels). From a single cubic simulation box, we show both the 21-cm slice perpendicular to the LoS (-. plane) and one that
includes the LoS (/ ) direction. Both models have the same radio production e�ciency, with astrophysical model parameters: +2 = 16.5 km s�1, 5⇤ = 0.1, and
5Radio = 3000; note that the circular velocity corresponds to the minimum halo mass for star formation being set by atomic cooling, and at I = 20 the mass is
3 ⇥ 107"� . In this example we show the 21-cm slices from I = 20, when X-ray heating and reionization are rather insignificant, but for completeness we note
that the parameters are hard X-rays (⇢min = 1 keV with 5X = 1) and reionization parameters as noted in section 2. We also note that we show the 50’th slice
from the simulation box along each axis, i.e., centered at / = �43.5 Mpc (for the -. plane) and - = �43.5 Mpc (for the /. plane).

additional order of magnitude, mostly due to the line of sight e�ect
of the radio fluctuations. At : = 1 Mpc�1 the enhancement due to
radio fluctuations starts earlier, but the behaviour is quite similar at
I = 10�20. Regardless of scale, the radio fluctuations eventually die
down as the number of sources becomes large, and the power spec-
trum becomes the same as it would be with a uniform excess radio
background. To account for the possible absence of CMB/radio
heating, we furthermore show in Fig. 2 the power spectra for two
more simulation runs without this heating. Comparing the red
dashed-dotted line with the dotted black line for the CMB only
case, and the solid orange line with the solid blue line for the
excess radio background with the LoS e�ect calculated in this
work, we find that the heating e�ect lowers the power spectrum,
but the e�ect is rather minor for the model parameters shown
here.

In order to explore some of the dependence on the various un-
known astrophysical parameters, we show the case of a soft X-ray
SED in the top panel of Fig. 3, for : = 0.1 Mpc�1. As noted above,
the heating fluctuations are anti-correlated with the other 21-cm
fluctuations, so once the first generation of X-ray sources heat up
the IGM, this heating mechanism reduces the 21-cm fluctuations,
and then produces a 21-cm fluctuation peak when the heating fluc-
tuations dominate. X-ray photons with lower energies are absorbed
locally, while hard X-ray photons (& 1 keV) lose their energy due to
redshifting as they have a much longer mean free path. As a result,
heating is delayed and the resulting fluctuations are smaller for a hard
X-ray SED compared to a soft X-ray SED. Thus, the CMB-only case
does show three peaks (Ly-U coupling, heating, and reionization),
but the strong heating peak in the soft X-ray case is barely present
in the case of hard X-rays. Like the case with the hard X-ray SED
shown in Fig. 2, although there are some random fluctuations at
low redshifts, the power spectra, in general, are only marginally
a�ected by the CMB/radio heating (see the top panel of Fig. 3).

In the presence of a strong radio background, the coupling tran-
sition is delayed due to the inverse dependence of the coupling co-

e�cients on the radiation background, and the heating transition is
delayed as well since the kinetic temperature now needs to reach
the higher value )CMB + )radio (where )radio is replaced by )R,los
in the full calculation with the LoS e�ect). At the same time, the
fluctuations in the radio background compete with, and sometimes
dominate over, the Ly-U and heating fluctuations. For hard X-rays,
the two normal peaks are washed out and a single overall peak ap-
pears, close to the redshift of the CMB-only heating peak. When we
include the LoS radio fluctuations, this overall peak gets a significant
boost (and a slight delay). In the case of a soft X-ray SED, without
the LoS e�ect (i.e., in the previous work case) the strong heating
fluctuations dominate and maintain a clear heating peak in the 21-
cm power spectrum, which is boosted and delayed compared to the
case without excess radio (CMB only). However, when we take into
account the LoS radio fluctuations, these fluctuations become strong
enough compared to the heating fluctuations to again wash out the
heating peak from the power spectrum and produce a single overall
peak.

Besides the X-ray SED parameters, the X-ray radiation e�ciency
( 5X) is another free parameter in our simulation, defined in equation
1. In the bottom panel of Fig. 3 we consider a low e�ciency case
( 5X = 0.01, compared to our fiducial 5X = 1). In this case the
heating peak disappears from the 21-cm power spectrum even in
the CMB only case. In the presence of a strong radio background,
the dominance of the radio fluctuations (in this case with hard X-
rays) means that lowering the X-ray e�ciency has little e�ect at high
redshifts, but it does boost the low-redshift signal since in this case the
21-cm signal is maintained in absorption down to the reionization
epoch. In this case of a low X-ray radiation e�ciency, where
any available heating mechanism is crucial, even in the CMB-
only case there are mild di�erences between the power spectra
with and without CMB heating towards lower redshifts, mainly
during the heating epoch. In the presence of the excess radio
background, the absence of radio heating enhances the power
spectrum by approximately an order of magnitude in this case,
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Line-of-sight radio fluctuations 5

Figure 1. Line-of-sight e�ect of fluctuations in the excess radio background on the cosmic dawn 21-cm signal from I = 20. We compare the case of a fluctuating
radio background (left panel) from our previous work to the line-of-sight contribution of the fluctuating radio background emitted by galaxies (middle panel).
The 21-cm slice perpendicular to the line-of-sight has also been shown (righ panel). Both models have the same radio production e�ciency. Astrophysical
model parameters are: +2 = 16.5 km s�1, 5⇤ = 0.1, 5Radio = 3000. As for this example, we show the 21-cm slices from I = 20, when the heating and ionization
are insignificant, the X-ray and reionization parameters are irrelevant here. Left and middle panels show the 21-cm slices in the direction perpendicular to the
image. The right panel shows the 21-cm slice of the same cubic simulation box along the direction perpendicular to the line-of-sight.

Ly-U fluctuations along with some contributions from the density
fluctuations. As the radio fluctuations considered in this work, are
assumed to be originated from the high redshift radio sources such
as star forming galaxies, there is a positive correlations between the
radio fields and both the Ly-U fluctuations and density fluctuations.
So the radio emission from these galaxies results in an enhancement
in the 21-cm brightness temperature during the coupling transition.
When we consider the line-of-sight radio background, the contribu-
tions from the radio sources add up along the line-of-sight direction
resulting a significant boost in the contrast between the spin temper-
ature and the radiation temperature.

To understand the e�ects of the LoS radio fluctuations on the
21-cm signal, we use a high value of radio production e�ciency,
5R = 3000 and low mass halos with a minimum circular velocity
(+⇠ ) of 16.5 km/s corresponding to the minimum halo mass for star
formation of 3 ⇥ 107"� at I = 20.

Due to the positive correlation between the contributions from the
radio fluctuations and the Ly-U coupling and the density field, the
radio fluctuations boost the 21-cm power spectrum at high redshifts
and when we consider the line of sight component of the radio
fluctuations, the enhancement in the power spectrum becomes much
more pronounced up to a factor of 10 at redshifts prior to the onset
of X-ray heating. The enhancement in the 21-cm power spectrum is
shown in Fig. 2 for two di�erent values of wavenumber. Here we
also show the case without excess radio background, i.e, CMB only
case with 5Radio = 0 (dotted black line in both panels). Note that
the line of sight consideration of the uniform radio background has
no special feature compared to the uniform radio background used
in the previous work. So throughout this paper, the power spectrum
due to the uniform radio background has been shown for this work
only (dashed blue line). The heating fluctuations are anti-correlated
with 21-cm fluctuations from all the other sources meaning that once
the X-ray photons emitted from the first generation of stars and X-
ray sources heat up the IGM, this heating mechanism reduces the
21-cm fluctuations as long as the gas is cooler than the background
radiation temperature. X-ray photons with lower energies (⇠ 0.5 keV)

are absorbed locally, while the hard X-ray photons which are more
energetic (& 1 keV) lose their energy due to the redshift e�ect as
they have such a long mean free path that some of them are not
absorbed even by the end of reionization. As a result, hard X-ray give
rise to mild fluctuations on large scale (& 100 Mpc). So the heating
fluctuations are weaker for hard X-ray SED compared to the soft
X-ray SED. In presence of a su�ciently strong radio background,
the heating peak disappears. Instead we see a single over all peak at
the intermediate redshifts between Ly-U and the X-ray heating peak
(occurring in the CMB only case). When we consider the LoS radio
fluctuations, this over all peak gets a significant boost which is by a
factor of 10 approximately at the intermediate redshifts between LyU
coupling and heating transition.

In case of the soft X-ray SED, strong heating fluctuations dominate
over the fluctuations imprinted by the radio background resulting
a clear heating peak in the 21-cm power spectrum. However, the
height of peak due to the radio fluctuations di�ers compared to the
uniform radio case (with the same mean intensity). Though with
the radio fluctuations the heating peak shifts towards lower redshift
compared to the case without excess radio (CMB only). This is
because in presence of excess radio fluctuations, kinetic temperature
needs more time to get closer to the radiation temperature (at the
heating peak, )K = )CMB + )radio). Interestingly, when we take into
account the LoS radio fluctuations, fluctuations imprinted by the LoS
radio background become strong enough compared to the heating
fluctuations and ends up washing out the heating peak from the
power spectrum and producing a single over all peak at redshift that
is intermediate to the Ly-U and the heating peak (occurring in the
radio fluctuations without LoS case) as can be clearly seen in the top
panel of Fig. 3. The general trend is that when the Ly-U fluctuations
dominate, the radio fluctuations and hence it’s LoS components start
to enhance the 21-cm power spectrum and wash out the heating peak
for both cases of X-ray SEDs (heating peak for the soft X-ray SED
only vanishes due to the LoS radio fluctuations) and have a reduced
e�ect towards the EoR due to the saturation of the fluctuations from
the radio sources.
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Figure 2. The 21-cm power spectrum at two wavenumbers, : = 0.1 Mpc�1

and : = 1.0 Mpc�1, as a function of redshift, for various simulation runs with
a fixed excess radio background of 5Radio = 3000. We compare the fluctuating
radio background with the LoS e�ect (solid blue line) to the fluctuating radio
background from our previous work (solid cyan line). For added comparison,
the 21-cm power spectrum due to a uniform excess radio background is
shown (dashed blue line), along with the standard case with no excess radio
background, i.e., the CMB only case (dotted black line). The uniform radio
background case has the same mean intensity of the excess radio at each
redshift as in the cases of the fluctuating radio background. Shown here is the
model with a hard X-ray SED with ⇢min = 1 keV.

from cosmic dawn until the end of the EoR. This raises the cosmic
dawn power spectrum at : = 0.1 Mpc�1 to as high as 106 mK2.

Since the (isotropically averaged) 21-cm power spectrum is a func-
tion of two variables (: and I), in Fig. 4 we show the other cut, i.e.,
the function of : at a given redshift. This shows the e�ect of the LoS
radio fluctuations on the shape of the 21-cm power spectrum. Here
we use the same astrophysical model parameters as in Fig. 2. At high
redshifts (right panel of Fig. 4), when the first stars and galaxies begin
to form, the Ly-U fluctuations are the dominant source of the 21-cm
fluctuations in the standard case. The Ly-U photons typically travel a
significant distance (Reis et al. 2022), which washes out small-scale
fluctuations, while the strong radio intensity near sources increases
small-scale fluctuations, even more when the LoS e�ect is included.
At lower redshift (left panel), the LoS e�ect has less of an e�ect on
the power spectrum shape, and just gives an overall boost. At later
times, I ⇠ 10, the LoS radio fluctuations have almost no e�ect on
the shape of the 21-cm power spectrum compared to the previous
radio fluctuation work (Reis et al. 2020) due to the disappearance of
the excess radio fluctuations at low redshift. Consistently with the
earlier discussion, the absence of CMB/radio heating has only a
very mild e�ect on the power spectrum shown in Fig. 4.

Up to now in this section we have illustrated the consequences of
the LoS e�ect on the radio background using a particularly strong
radio background. Next, we examine the e�ect of the LoS radio fluc-
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Figure 3. The 21-cm power spectrum at : = 0.1 Mpc�1 as a function of
redshift for various X-ray parameters. Top panel: a soft X-ray SED (⇢min =
0.1 keV) with the fiducial X-ray e�ciency 5X = 1. Bottom panel: a hard
X-ray SED (⇢min = 1.0 keV) with a low 5X = 0.01.

tuations on the 21-cm power spectrum while varying the parameter
5Radio that regulates the strength of the excess radio background. We
show the 21-cm power spectrum as a function of redshift at : = 0.1
Mpc�1 for various values of 5Radio in Fig. 5. The LoS radio fluctua-
tions for moderate values of 5Radio can have a significant e�ect (⇠ an
order of magnitude) after the onset of star formation till the end of
the heating transition, as can be seen in the left panel of Fig.5. The
right panel of Fig. 5 shows the shape of the 21-cm power spectrum
for various values of 5Radio at I = 25. Among the values in the plot,
at high redshift only 5Radio of at least 300 has a large e�ect, but later
in cosmic dawn even 5Radio = 30 has quite a significant e�ect; since
we set 5⇤ = 0.1, the latter value corresponds to a value of 5Radio ⇥ 5⇤
that is lower by two orders of magnitude than the value required to
match the EDGES measurement.

The e�ect of the radio fluctuations on the global 21-cm signal is
shown in Fig. 6. The LoS e�ect of the radio fluctuations has only a
small e�ect on the global signal compared to the radio fluctuation
model considered in our previous work (Reis et al. 2020). The LoS
radio background (solid blue line) results in a slightly shallower min-
imum (a di�erence of ⇠ 50 mK). While the mean radio background
is unchanged by the LoS e�ect, the non-linearity of the 21-cm fluc-
tuations causes a slight change in the mean global signal. Although
for the standard astrophysical model the absence of CMB heat-
ing has only a small e�ect on the global signal (comparing the
black dotted and red dashed-dotted lines in Fig. 6), the removal
of CMB/radio heating deepens the absorption trough by around
16% in the excess radio background model. Note that the e�ect
appears particularly large since the global signal is usually shown
in linear rather than logarithmic scale.
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Figure 2. The 21-cm power spectrum at two wavenumbers, : = 0.1 Mpc�1

and : = 1.0 Mpc�1, as a function of redshift, for various simulation runs with
a fixed excess radio background of 5Radio = 3000. We compare the fluctuating
radio background with the LoS e�ect (solid blue line) to the fluctuating radio
background from our previous work (solid cyan line). For added comparison,
the 21-cm power spectrum due to a uniform excess radio background is
shown (dashed blue line), along with the standard case with no excess radio
background, i.e., the CMB only case (dotted black line). The uniform radio
background case has the same mean intensity of the excess radio at each
redshift as in the cases of the fluctuating radio background. Shown here is the
model with a hard X-ray SED with ⇢min = 1 keV.

from cosmic dawn until the end of the EoR. This raises the cosmic
dawn power spectrum at : = 0.1 Mpc�1 to as high as 106 mK2.

Since the (isotropically averaged) 21-cm power spectrum is a func-
tion of two variables (: and I), in Fig. 4 we show the other cut, i.e.,
the function of : at a given redshift. This shows the e�ect of the LoS
radio fluctuations on the shape of the 21-cm power spectrum. Here
we use the same astrophysical model parameters as in Fig. 2. At high
redshifts (right panel of Fig. 4), when the first stars and galaxies begin
to form, the Ly-U fluctuations are the dominant source of the 21-cm
fluctuations in the standard case. The Ly-U photons typically travel a
significant distance (Reis et al. 2022), which washes out small-scale
fluctuations, while the strong radio intensity near sources increases
small-scale fluctuations, even more when the LoS e�ect is included.
At lower redshift (left panel), the LoS e�ect has less of an e�ect on
the power spectrum shape, and just gives an overall boost. At later
times, I ⇠ 10, the LoS radio fluctuations have almost no e�ect on
the shape of the 21-cm power spectrum compared to the previous
radio fluctuation work (Reis et al. 2020) due to the disappearance of
the excess radio fluctuations at low redshift. Consistently with the
earlier discussion, the absence of CMB/radio heating has only a
very mild e�ect on the power spectrum shown in Fig. 4.

Up to now in this section we have illustrated the consequences of
the LoS e�ect on the radio background using a particularly strong
radio background. Next, we examine the e�ect of the LoS radio fluc-
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X-ray SED (⇢min = 1.0 keV) with a low 5X = 0.01.

tuations on the 21-cm power spectrum while varying the parameter
5Radio that regulates the strength of the excess radio background. We
show the 21-cm power spectrum as a function of redshift at : = 0.1
Mpc�1 for various values of 5Radio in Fig. 5. The LoS radio fluctua-
tions for moderate values of 5Radio can have a significant e�ect (⇠ an
order of magnitude) after the onset of star formation till the end of
the heating transition, as can be seen in the left panel of Fig.5. The
right panel of Fig. 5 shows the shape of the 21-cm power spectrum
for various values of 5Radio at I = 25. Among the values in the plot,
at high redshift only 5Radio of at least 300 has a large e�ect, but later
in cosmic dawn even 5Radio = 30 has quite a significant e�ect; since
we set 5⇤ = 0.1, the latter value corresponds to a value of 5Radio ⇥ 5⇤
that is lower by two orders of magnitude than the value required to
match the EDGES measurement.

The e�ect of the radio fluctuations on the global 21-cm signal is
shown in Fig. 6. The LoS e�ect of the radio fluctuations has only a
small e�ect on the global signal compared to the radio fluctuation
model considered in our previous work (Reis et al. 2020). The LoS
radio background (solid blue line) results in a slightly shallower min-
imum (a di�erence of ⇠ 50 mK). While the mean radio background
is unchanged by the LoS e�ect, the non-linearity of the 21-cm fluc-
tuations causes a slight change in the mean global signal. Although
for the standard astrophysical model the absence of CMB heat-
ing has only a small e�ect on the global signal (comparing the
black dotted and red dashed-dotted lines in Fig. 6), the removal
of CMB/radio heating deepens the absorption trough by around
16% in the excess radio background model. Note that the e�ect
appears particularly large since the global signal is usually shown
in linear rather than logarithmic scale.
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we find to be helpful for reducing the noise (Banet et al. 2021)
and bringing out the Ly-α bubbles.

A cosmic-dawn signal dominated by coupled bubbles is
predicted to feature prominently in the 21 cm power spectrum
(Figure 4), producing a distinct power-spectrum shape that is
strongly correlated with the typical size of the bubbles (and
thus the typical brightness of early galaxies). Coupled bubbles
of size Rbubble suppress fluctuations on scales smaller than the
typical bubble size, and thus result in a break in the power
spectrum at kbreak∼ 2π/Rbubble. Meanwhile, on large scales, the
power spectrum is boosted compared to previous predictions
by a factor that is between 2 and 7, depending on the
astrophysical parameters. Thus, the signature of discrete
galaxies is also a promising goal for radio arrays targeting
the 21 cm power spectrum at cosmic dawn, such as HERA
(Kohn et al. 2019) and NenuFAR (Zarka et al. 2012).

While it will be intriguing to detect individual coupled
bubbles in 21 cm images (as illustrated in Figure 3), it is
important to also construct an effective statistic, to be applied to

21 cm images of cosmic dawn, that aggregates together the
individual bubbles and takes advantage of this feature in order
to distinguish among models. We propose the total peak profile
statistical probe, which measures a combination of the
abundance, spatial extent, and brightness temperature depth
of the coupled 21 cm bubbles. We first detect both minima and
maxima in the smoothed SKA box (see Appendix A); an
example of such detected peaks is shown in Figure 3 (only the
peak minima are shown in the figure, for comparison with the
image that shows the projected minimum values of the signal).
We restrict ourselves to strong peaks, defined as having a value
higher (in absolute value) than 3σ, where σ is the standard
deviation of the SKA box voxel values. We calculate the radial
profile around each peak that passes this threshold, and sum the
profiles. The summing is done with the signed (that is, not
absolute) value, in order to explicitly capture the asymmetry
between the maxima and minima. Indeed, any symmetric field
(about its mean) would give a total result approaching zero;
thus, this statistic is inherently non-Gaussian, and naturally

Figure 3. Simulated images of the cosmic-dawn 21 cm signal. Since early galaxies in this model are rare, we find it useful to show a kind of projected image, defined
as showing the minimum value of the signal in the direction perpendicular to the image (obtained from a simulation box that is 384 comoving Mpc on a side; each
image is made of square pixels of side 3 Mpc). All panels correspond to the same simulated volume, which illustrates a model with a star formation efficiency få = 0.1
and a minimum circular velocity Vc = 50 km s−1, corresponding to a minimum star-forming halo mass of Mmin ∼ 8 × 108 Me at the redshift shown, z = 21 (Figure 7
shows similarly striking effects for Vc = 25 km s−1). Left panels: the results from previous work, that is, without the effects of Poisson fluctuations and multiple
scattering, shown on the scale set by the right-hand panels, for easy comparison. Right panels: the results from this work. Top panels: ideal images (i.e., showing the
direct simulation outputs). Bottom panels: projections of the same simulated volumes as in the top panels, but as mock SKA images (see the text); such a smoothed
projection can similarly be obtained from real images. In this work, the signal is composed of large “coupled bubbles” around individual galaxies. The large sizes and
depths of the bubbles help them retain sufficient contrast in the mock SKA projected image to enable their detection. The locations of the > 3σ peaks as found in the
smoothed SKA box are marked in both the ideal and SKA boxes, for easy comparison. The peaks correspond to individual coupled bubbles in the ideal image, while
in the SKA box there is a minor contribution smoothed in from nearby smaller bubbles. Note that some additional peaks with lower significance can be seen in the
SKA box, corresponding to smaller coupled bubbles in the ideal image. Also note that the SKA boxes are shown with respect to the cosmic mean brightness
temperature, but the plotted values are negative, due to our choice of showing projected minimum values.
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Figure 2. Power spectra of density and temperature fluctuations versus
comoving wavenumber, at redshifts 100 and 20. We consider fluctuations in
the CDM density (short-dashed curves), baryon density (solid curves) and
baryon temperature (long-dashed curves).

Equations (4), (7), (9), (13) and (14) are a closed set of equations
describing the evolution of density and temperature perturbations.
We note that Bharadwaj & Ali (2004a) derived a similar equation to
equation (14) but solved it only for the case of a density perturbation
that follows the Einstein–de Sitter growing mode δb ∝ a and thus
neglected spatial variations in the speed of sound.

Fig. 2 shows the power spectra at redshift 20 and 100. As time
passes, the power spectrum of the baryons approaches that of the
dark matter except for the pressure cut-off, and the baryon temper-
ature fluctuations also increase. However, even during the era of
the formation of the first galaxies (z ∼ 40–20), there is still signif-
icant memory in the perturbations of their earlier coupling to the
CMB. This is highlighted in Fig. 3, which shows the ratios δb/δdm

and δT /δb. In both quantities, the strong oscillations that are appar-
ent at z = 400 are slowly smoothed out toward lower redshifts. At
the largest scales, the baryons follow the dark matter density, and
δT /δb evolves from 1/3 (the value during tight thermal coupling to
the CMB) to ∼2/3 (from adiabatic expansion). On smaller scales,
the two ratios start from values # 1 during mechanical/thermal
coupling, and increase towards δb/δdm = 1 and δT /δb = 2/3, re-
spectively. The former ratio approaches its asymptotic value earlier,
because the baryons decouple from the photons first mechanically
and only later thermally. At the smallest scales (below the baryonic
Jeans scale), the baryon fluctuation is suppressed at all redshifts due
to gas pressure, when the k2 term in equation (13) dominates. It is
clear from this figure that the traditional assumption of δT /δb being
independent of scale is inaccurate at all redshifts considered here.

Fig. 4 shows a detailed comparison between the fluctuation
growth described by our improved equation (13) and that given
by the traditional equation (10) (e.g. Gnedin 2004). In the improved
calculation, the ratio δT /δb shows different behaviour on the hori-
zontal scale, the photon acoustic oscillations and on smaller scales.
Although the ratio is roughly constant over some ranges of scales, its

Figure 3. Perturbation ratios δb/δdm and δT /δb versus comoving
wavenumber. We consider z = 400 (dotted curves), z = 100 (solid curves)
and z = 20 (dashed curves).

value differs from that of the traditional calculation. The improved
calculation changes the temperature fluctuations on all scales by
!10 per cent at z = 20, and by much more at z = 100. Note that
at the lower redshift, δT /δb at the small-k end is higher than the
adiabatic value of 2/3, because when T̄ falls significantly below T̄γ

the thermal coupling tends to heat the gas more strongly in regions
with a higher photon density [see the δγ term in equation (8)].

We also present in the lower panel of this figure the ratio between
the fluctuations in the improved calculation and those in the tra-
ditional calculation. Although the improved calculation has only a
small effect on the dark matter density ("1 per cent) and a sim-
ilarly small effect on the baryon density at k < 100 Mpc−1, on
smaller scales the baryon fluctuations are substantially affected. The
baryon fluctuations are changed by up to 30 per cent at z = 100 and
10 per cent at z = 20. Thus, accurate initial conditions for mod-
els and simulations of the formation of the first galaxies require a
full calculation of the evolution of baryon density and temperature
fluctuations along with the dark matter.

4 2 1 - cm F L U C T UAT I O N S A N D T H E S P I N
T E M P E R AT U R E

Quantitative calculations of 21-cm absorption begin with the spin
temperature T s, defined through the ratio between the number den-
sities of hydrogen atoms,
n1

n0
= g1

g0
exp−T#/Ts , (15)

where subscripts 1 and 0 correspond to the excited and ground state
levels of the 21-cm transition, (g1/g0) = 3 is the ratio of the spin de-
generacy factors of the levels, and T # = 0.0682 K corresponds to the
energy difference between the levels. The 21-cm spin temperature
is, on the one hand, radiatively coupled to the CMB temperature,
and on the other hand coupled to the kinetic gas temperature T
through collisions (Allison & Dalgarno 1969) or the absorption of
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Fig. 1 The 21-cm global signal from the dark ages (blue solid line) as a function of ⌫ (or z
as the top x-axis). We also show the expected thermal noise for a global signal experiment
observing for integration time 1,000 hrs (orange dashed line) or 100,000 hrs (green dotted
line) for a bin with �(ln ⌫) = 1.

2 Results

2.1 The global 21-cm signal

As noted above, measuring the 21-cm global signal requires a single, well-
calibrated antenna. Fig. 1 shows the 21-cm global signal from the dark ages
as a function of ⌫ (and z), for the fiducial cosmological model. The expected
signal dips to a maximum absorption of �40.2mK at z = 86 (⌫ = 16.3 MHz).
The thermal noise in a global signal measurement is [35]

�T =
Tsysp
�⌫ tint

, (3)

where �⌫ is the bandwidth, tint the integration time, and we assume that the
system temperature Tsys is approximately equal to the sky brightness tem-
perature Tsky = 180 ⇥ (⌫/180MHz)�2.6 K [24]. Also shown in Fig. 1 is the
instrumental noise for tint = 1,000 hrs (a standard fiducial integration time,
also equal to 11.4% of a year) and 100,000 hrs (a quite optimistic maximum
value), for a bin around each ⌫ of width �(ln ⌫) = 1. The noise increases
sharply with redshift, yielding a maximum signal-to-noise ratio (S/N) of 11.6
for tint = 1,000 hrs and 116 for 100,000 hrs (both at z = 41 or ⌫ = 34 MHz);
even in our most optimistic scenario of tint = 100,000 hrs, the S/N for the
global signal drops below unity at z = 207 (⌫ = 6.8MHz).
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Fig. 1 The 21-cm global signal from the dark ages (blue solid line) as a function of ⌫ (or z
as the top x-axis). We also show the expected thermal noise for a global signal experiment
observing for integration time 1,000 hrs (orange dashed line) or 100,000 hrs (green dotted
line) for a bin with �(ln ⌫) = 1.

2 Results

2.1 The global 21-cm signal

As noted above, measuring the 21-cm global signal requires a single, well-
calibrated antenna. Fig. 1 shows the 21-cm global signal from the dark ages
as a function of ⌫ (and z), for the fiducial cosmological model. The expected
signal dips to a maximum absorption of �40.2mK at z = 86 (⌫ = 16.3 MHz).
The thermal noise in a global signal measurement is [35]

�T =
Tsysp
�⌫ tint

, (3)

where �⌫ is the bandwidth, tint the integration time, and we assume that the
system temperature Tsys is approximately equal to the sky brightness tem-
perature Tsky = 180 ⇥ (⌫/180MHz)�2.6 K [24]. Also shown in Fig. 1 is the
instrumental noise for tint = 1,000 hrs (a standard fiducial integration time,
also equal to 11.4% of a year) and 100,000 hrs (a quite optimistic maximum
value), for a bin around each ⌫ of width �(ln ⌫) = 1. The noise increases
sharply with redshift, yielding a maximum signal-to-noise ratio (S/N) of 11.6
for tint = 1,000 hrs and 116 for 100,000 hrs (both at z = 41 or ⌫ = 34 MHz);
even in our most optimistic scenario of tint = 100,000 hrs, the S/N for the
global signal drops below unity at z = 207 (⌫ = 6.8MHz).
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Fig. 2 The spherically-averaged (total) power spectrum of 21-cm brightness fluctuations as
a function of wavenumber k during the dark ages, at redshifts z = [150, 125, 75, 50, 40, 30].
The dotted lines show the power spectrum at z = 75 and 40 when accounting for the e↵ect
of angular resolution (for our A or B configuration). We also show the 1� noise (thermal plus
cosmic variance) for our A (short dashed lines) and B (long dashed lines) configurations, at
z = 75 and 40 (for �(ln ⌫) = 1 and �(ln k)=1).

Methods). The figure also illustrates the power spectrum when accounting
for the e↵ect of angular resolution. The thermal noise increases rapidly with
redshift, and so the maximum S/N (without the e↵ect of angular resolution)
occurs at the minimum redshift we consider (z = 30), and is 13.3 for the A
configuration and 133 for the B configuration, both at k = 0.091Mpc�1.

Table 2 The observational configurations that we use to illustrate measurements of the
21-cm power spectrum, in terms of the collecting area Acoll and integration time tint (see
Methods for additional details).

Configuration

D C B A

Acoll [km2] 100 100 10 10
tint [hrs] 10,000 1,000 10,000 1,000

Given measurements of the 21-cm power spectrum throughout the dark
ages (z > 30), we do a Fisher analysis with five cosmological parameters (see
Methods). The relative errors in the ⇤CDM cosmological parameters are rather
large due to significant degeneracies, and even configuration D approaches the
accuracy level of Planck only in some of the parameters (see Sec. A.6). As
with the global signal, it is more useful to consider parameter combinations

ang. res.  

z= CAMB + :  

LOS peculiar velocities 
Kaiser 1987 
Bharadwaj & Ali 2004 
Barkana & Loeb 2005 

Alcock-Paczyński effect 
Nusser 2005 
Ali, Bharadwaj & Pandey 2005 
Barkana 2006 

Light-cone effect 
Barkana & Loeb 2006
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Fig. 2 The spherically-averaged (total) power spectrum of 21-cm brightness fluctuations as
a function of wavenumber k during the dark ages, at redshifts z = [150, 125, 75, 50, 40, 30].
The dotted lines show the power spectrum at z = 75 and 40 when accounting for the e↵ect
of angular resolution (for our A or B configuration). We also show the 1� noise (thermal plus
cosmic variance) for our A (short dashed lines) and B (long dashed lines) configurations, at
z = 75 and 40 (for bins with �(ln ⌫) = 1 and �(ln k)=1).

Table 2 The observational configurations that we use to illustrate measurements of the
21-cm power spectrum, in terms of the collecting area Acoll and integration time tint (see
Supplementary Information).

Configuration

D C B A G

Acoll [km2] 100 100 10 10 5
tint [hrs] 10,000 1,000 10,000 1,000 1,000

Given measurements of the 21-cm power spectrum throughout the dark
ages (z > 30), we carry out a Fisher analysis with five cosmological parameters
(see Supplementary Information). The relative errors in the ⇤CDM cosmo-
logical parameters are rather large due to significant degeneracies, and even
configuration D approaches the accuracy level of Planck only in some of the
parameters (see Supplementary Information). As with the global signal, it is
more useful to consider parameter combinations that are well constrained. In
particular, we focus on the minimum variance combination (see Supplementary
Information), which for configuration A is

CPowSpec ⌘ ⌦bh
2 (Ase

�2⌧ )0.307(0.9950)ns

(⌦mh
2)0.464H0.0753

0

. (2)
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Fig. 3 We show graphically the main results that are listed in Table 1, namely the relative
errors in % and the limits on the total mass of neutrinos (all are 1�). For the Helium fraction
(YP) and the neutrino mass, we compare to constraints based on Planck (with or without
BAO from galaxy clustering). Note that we abbreviate “configuration” as “Conf.”.

that are well constrained. In particular, we focus on the minimum variance
combination (see Methods, Secs. A.1 and A.5), which for configuration A is

CPowSpec ⌘ ⌦bh
2 (Ase

�2⌧ )0.307(0.9950)ns

(⌦mh
2)0.464H0.0753

0

. (5)

Here the additional parameters [34] are the Hubble constant H0 (in units of
km s�1 Mpc�1), the primordial amplitude As, the total reionization optical
depth to the CMB ⌧ , and the scalar spectral index ns. While the dependence
of the 21-cm power spectrum on the cosmological parameters is complex, we
can try to roughly understand what drives the various powers in the com-
bination CPowSpec. As discussed in the previous section, the global signal is
roughly proportional to (⌦bh

2)2/(⌦mh
2)1/2. The power spectrum goes as the

global signal squared times the dimensionless (i.e., relative) squared fluctua-
tion level. This is proportional to the primordial amplitude As, reduced by

1  errorsσ
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depends on a combination of cosmological parameters. Specifically, the global
signal depends significantly only on the parameters ⌦bh

2 and ⌦mh
2, where ⌦b

and ⌦m are the cosmic mean densities of baryons and (total) matter, respec-
tively, in units of the critical density, and h is the Hubble constant in units of
100 km s�1 Mpc�1. Given the strong degeneracy between the two parameters,
the constraint is on the combination (see Supplementary Information)

CGlobal ⌘
⌦bh

2

(⌦mh
2)0.248

. (1)

The relative errors in CGlobal for three di↵erent values of tint are shown
(along with our other main results) in Table 1 and Fig. 3. We account for the
fact that the presence of the bright synchrotron foreground means that a signal
component of the same shape cannot be distinguished from the foreground
(see Supplementary Information). A measurement of the global 21-cm signal
to the precision of thermal noise from a 1,000 hour integration would yield a
10.1% measurement. This would be a remarkable achievement for cosmological
concordance, since it would be independent of other cosmological probes and
come from a previously unexplored cosmological era. Increasing the integration
time would improve this precision as the inverse square root, so that sub-
percent precision in CGlobal (comparable to the typical Planck precision on
each cosmological parameter) would require a considerable integration time
exceeding 100,000 hrs.

Table 1 The relative errors in % and the limits on the total mass of neutrinos (all are
1�). For the Helium fraction (YP) and the neutrino mass, we compare to constraints based
on Planck CMB measurements alone and also (Planck + BAO) those that include BAO
measurements from galaxy clustering [33].

Global Planck Planck Integration time

signal +BAO 100,000 hrs 10,000 hrs 1,000 hrs

CGlobal 1.01 3.18 10.1
YP 4.96 5.44 3.14 9.94 31.4P

m⌫ [eV] < 0.0578 < 0.108 < 0.746

Power Planck Planck Configuration

spectrum +BAO D C B A G

CPowSpec 0.0457 0.382 0.462 4.59 10.1
YP 4.96 5.44 0.116 0.981 1.20 11.9 26.6P

m⌫ [eV] < 0.0578 < 0.108 < 0.0100 < 0.0839 < 0.107 < 1.06

In addition to the minimal, standard set of cosmological parameters, the
global signal can also provide additional constraints, of which we consider a
couple examples. For these additional parameters, we consider the favorable
approach in which we fix the standard set of parameters at their fiducial values
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Fig. 3 We show graphically the main results that are listed in Table 1, namely the relative
errors in % and the limits on the total mass of neutrinos (all are 1�). For the Helium fraction
(YP) and the neutrino mass, we compare to constraints based on Planck (with or without
BAO from galaxy clustering). Note that we abbreviate “configuration” as “Conf.”.

Here the additional parameters [33] are the Hubble constant H0 (in units of
km s�1 Mpc�1), the primordial amplitude As, the total reionization optical
depth to the CMB ⌧ , and the scalar spectral index ns. We note that the form
of CPowSpec (eq. 2) changes slightly for di↵erent scenarios (see Supplementary
Information).

The relative errors in CPowSpec for the various observational configura-
tions are shown in Table 1 and Fig. 3. Configuration A would yield a 4.59%
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km s�1 Mpc�1), the primordial amplitude As, the total reionization optical
depth to the CMB ⌧ , and the scalar spectral index ns. We note that the form
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Fig. 2 The spherically-averaged (total) power spectrum of 21-cm brightness fluctuations as
a function of wavenumber k during the dark ages, at redshifts z = [150, 125, 75, 50, 40, 30].
The dotted lines show the power spectrum at z = 75 and 40 when accounting for the e↵ect
of angular resolution (for our A or B configuration). We also show the 1� noise (thermal plus
cosmic variance) for our A (short dashed lines) and B (long dashed lines) configurations, at
z = 75 and 40 (for bins with �(ln ⌫) = 1 and �(ln k)=1).

Table 2 The observational configurations that we use to illustrate measurements of the
21-cm power spectrum, in terms of the collecting area Acoll and integration time tint (see
Supplementary Information).

Configuration

D C B A G

Acoll [km2] 100 100 10 10 5
tint [hrs] 10,000 1,000 10,000 1,000 1,000

Given measurements of the 21-cm power spectrum throughout the dark
ages (z > 30), we carry out a Fisher analysis with five cosmological parameters
(see Supplementary Information). The relative errors in the ⇤CDM cosmo-
logical parameters are rather large due to significant degeneracies, and even
configuration D approaches the accuracy level of Planck only in some of the
parameters (see Supplementary Information). As with the global signal, it is
more useful to consider parameter combinations that are well constrained. In
particular, we focus on the minimum variance combination (see Supplementary
Information), which for configuration A is

CPowSpec ⌘ ⌦bh
2 (Ase

�2⌧ )0.307(0.9950)ns

(⌦mh
2)0.464H0.0753

0

. (2)
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Table 1. The significance (# of f) of the detection of the standard signal.

Integration time
1,000 hrs 10,000 hrs 100,000 hrs

Global signal 4.12 13.0 41.2
Configuration

G A B C D
Power spectrum 3.01 6.71 66.6 81.6 690

removal (in an optimistic scenario) by adding a term in the shape of
the synchrotron foreground (with the amplitude a free parameter). A
contributing component of this shape in the model cannot be distin-
guished from the foreground. Then, for any signal, we can determine
the statistical significance of its detection (i.e., the detection of the
difference between the expected signal and a zero signal) as follows.
We define the signal as a parameter V times the expected signal (i.e.,
the expected signal corresponds to V=1, and the absence of the signal
to V = 0. We then fit to the data, using a Fisher analysis to extract the
error XV in the measurement of V (assuming all cosmological param-
eters are fixed at their fiducial values as determined by Planck). This
tells us the significance of the detection of the signal relative to zero,
i.e., assuming Gaussian thermal noise, the detection significance is a
number of f equal to 1/XV. For the estimation of noise in the global
signal measurement, we assume a redshift range of 30-200 with a
bandwidth of �a = 1 MHz and explore three different integration
times of Cint = 1,000 hrs, 10,000 hrs and 100,000 hrs. We note that in
practice, an array of global antennas can be used to increase the total
effective integration time.

We first consider the significance of the detection of the standard
global signal, without an ERB. We find that is would be distin-
guishable from zero at 4.12f for Cint of 1,000 hrs, and 41.2f for
100,000 hrs (see the upper panel of Table 1).

For the ERB models, there are two interesting cases to ask: how
well they can be detected (i.e., distinguished from a zero signal),
and how well they can be distinguished from the standard signal
(i.e., showing that the signal is anomalous and must correspond to
exotic physics); in the latter case, the signal model corresponds to the
standard signal plus V times the difference between the ERB model
and the standard model. Fig. 5 shows the value of the 1-f error in
V for both cases, i.e., a detection relative to the standard signal (the
solid curves), and a detection in general (i.e., relative to zero; dashed
curves). Depending on the value of �r, either error can be higher.
The error relative to the standard signal decreases with increasing �r
(as the ERB signal differs more and more from the standard case),
initially going as 1/�r until it saturates roughly beyond �r90. The
error relative to zero signal goes between that for the standard signal
(at small �r) to that for the saturated ERB signal (at large �r), with
a small peak at �r = 0.0204; this is the value of �r with the smallest
significance of detecting the ERB signal (relative to zero signal), the
significance being 2.04f, 6.46f, and 20.4f, for Cint = 1,000 hrs,
10,000 hrs, and 100,000 hrs, respectively.

The significance of detecting the ERB global signal in these two
ways is also listed in Table 2, for various values of �r and Cint.
A 1,000 hr global experiment can detect the saturated ERB signal
at 6.38f significance, and distinguish it from the standard signal at
9.04f. We note that both of these are substantially stronger statistical
results than the detection of the standard signal itself (4.12f in this
case), due to the greater amplitude of the signal in the ERB case.
With Cint = 100,000 hrs, the significance levels would increase ⇥10.

There are some subtleties in these results. First, there is the issue
of how it is possible that distinguishing the ERB signal from the

Figure 5. The value of the 1-f error in V as a function of �r (minimized over
Ir; see the text). We show two detection scenarios: distinguishing the ERB
global signal from the standard case (solid lines), and detecting it relative to
zero signal (dashed lines).

Table 2. The significance (# of f) of detecting the ERB global signal relative
to zero signal or the standard signal.

Integration time
�r 1,000 hrs 10,000 hrs 100,000 hrs

0.001 3.86 12.2 38.6
0.01 2.38 7.50 23.7

Relative to zero 0.1 4.40 13.9 44.0
0.4 5.89 18.6 58.9
375 6.38 20.2 63.8

0.001 0.292 0.922 2.92
0.01 2.22 7.02 22.2

Relative to standard 0.1 6.91 21.8 69.1
0.4 8.45 26.7 84.5
375 9.04 28.6 90.4

standard signal is easier than from zero, in some cases. The answer
is the degeneracy with the foreground term; since the ERB signal
(most clearly in the saturated case) has a shape versus frequency that
is similar to the foreground, it is more difficult to detect it than would
be expected just based on its amplitude, while the standard global
signal has a shape that differs more clearly from the shape of the
foreground. A related subtlety has to do with the redshift range of
the fitting. When measuring the ERB signal relative to the standard
signal, including the highest redshifts adds more information, but this
goes into determining more accurately the foreground term (which
is of little interest) rather than the ERB signal itself; in other words,
XV is higher due to the stronger degeneracy with the foreground
term. Fig. 6 shows the dependence of the error (for ERB detection
relative to the standard model) on the maximum redshift Ir, for the
saturated case (�r = 375). The minimum for all the curves occurs
at Ir = 126. For example, for Cint = 1,000 hrs, the minimum XV is
0.111 while the value for Ir = 200 is 0.119. Thus, actually Fig. 5
shows XV not for Ir = 200 but rather for the value of Ir that gives
the minimum error in each case. We note that Fig. 6 also doubles as
showing the case when the excess background was produced only at
redshift Ir (and not before), and we fit to observations only up to that
Ir. For example, a measurement of the dark ages global 21-cm signal
between redshifts 30 and 56 to the precision of thermal noise from
a 1,000 hour integration would be able to distinguish the saturated
signal from the standard signal at 5f.

MNRAS 000, 1–10 (2023)
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Fig. 3 We show graphically the main results that are listed in Table 1, namely the relative
errors in % and the limits on the total mass of neutrinos (all are 1�). For the Helium fraction
(YP) and the neutrino mass, we compare to constraints based on Planck (with or without
BAO from galaxy clustering). Note that we abbreviate “configuration” as “Conf.”.

Here the additional parameters [33] are the Hubble constant H0 (in units of
km s�1 Mpc�1), the primordial amplitude As, the total reionization optical
depth to the CMB ⌧ , and the scalar spectral index ns. We note that the form
of CPowSpec (eq. 2) changes slightly for di↵erent scenarios (see Supplementary
Information).

The relative errors in CPowSpec for the various observational configura-
tions are shown in Table 1 and Fig. 3. Configuration A would yield a 4.59%
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of CPowSpec (eq. 2) changes slightly for di↵erent scenarios (see Supplementary
Information).

The relative errors in CPowSpec for the various observational configura-
tions are shown in Table 1 and Fig. 3. Configuration A would yield a 4.59%

Constraints 

Springer Nature 2021 LATEX template

The 21-cm signal from the dark ages 9

Fig. 3 We show graphically the main results that are listed in Table 1, namely the relative
errors in % and the limits on the total mass of neutrinos (all are 1�). For the Helium fraction
(YP) and the neutrino mass, we compare to constraints based on Planck (with or without
BAO from galaxy clustering). Note that we abbreviate “configuration” as “Conf.”.

Here the additional parameters [33] are the Hubble constant H0 (in units of
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Fig. 2 The spherically-averaged (total) power spectrum of 21-cm brightness fluctuations as
a function of wavenumber k during the dark ages, at redshifts z = [150, 125, 75, 50, 40, 30].
The dotted lines show the power spectrum at z = 75 and 40 when accounting for the e↵ect
of angular resolution (for our A or B configuration). We also show the 1� noise (thermal plus
cosmic variance) for our A (short dashed lines) and B (long dashed lines) configurations, at
z = 75 and 40 (for bins with �(ln ⌫) = 1 and �(ln k)=1).

Table 2 The observational configurations that we use to illustrate measurements of the
21-cm power spectrum, in terms of the collecting area Acoll and integration time tint (see
Supplementary Information).

Configuration

D C B A G

Acoll [km2] 100 100 10 10 5
tint [hrs] 10,000 1,000 10,000 1,000 1,000

Given measurements of the 21-cm power spectrum throughout the dark
ages (z > 30), we carry out a Fisher analysis with five cosmological parameters
(see Supplementary Information). The relative errors in the ⇤CDM cosmo-
logical parameters are rather large due to significant degeneracies, and even
configuration D approaches the accuracy level of Planck only in some of the
parameters (see Supplementary Information). As with the global signal, it is
more useful to consider parameter combinations that are well constrained. In
particular, we focus on the minimum variance combination (see Supplementary
Information), which for configuration A is
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from

Gc
1 + Gc

✓
1 �

)W

)g

◆

to
Gc)W/)R

1 + Gc)W/)R

✓
1 � )R

)g

◆
.

Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).
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b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).
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�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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When we consider the ability of lunar or space-based global exper-
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Figure 1. The evolution of the CMB temperature )W and gas temperature )g
and the spin temperature )s (in K unit), as a function of a (or I as the top
G-axis). The total radio background temperature )R for the ERB model with
�r = 0.4 is also shown, along with the corresponding )s.

where )W = 2.725 K (1 + I). Assuming that the optical depth of the
21-cm transition g21 ⌧ 1, this can be simplified to:
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where dHI is the neutral hydrogen density, d̄H is the cosmic mean
density of hydrogen, and Gc is the collisional coupling coefficient.
In Fig. 1 we show the evolution of )W and )g (cyan-blue and light-
orange lines, respectively) as a function of a (and I). Note that )W
falls as 1/a (or [1 + I]), while )g falls faster, eventually (at the lower
redshifts) as 1/a2 (or [1 + I]2).

During the dark ages, the spin temperature of the hydrogen atoms
is pulled towards the temperature of the gas ()s �! )g) by atomic
collisions, while it is pulled towards the temperature of the CMB
()s �! )W) by CMB scattering. The relative importance of these two
effects depends on the density of the gas. Fig. 2 shows the evolution
of Gc as a function of a (or I). The value of Gc is a measure of the
efficiency with which collisions between hydrogen atoms can couple
the spin states of the H � atoms into equilibrium with the regular
(kinetic) gas temperature. The coupling is strong (and so )s ⇡ )g)
roughly until the value Gc = 1 is reached at I = 72.4, after which )s
(which is shown in Fig. 1) begins to approach the CMB temperature.

The sky-averaged 21-cm brightness temperature, as a function of a
(or I), is referred to the 21-cm global (or mean) signal. Experiments
measuring the global signal require a single, well-calibrated antenna.
Therefore, they are relatively simple and advantageous to consider as
the first step toward detecting the dark ages signal. For the standard
set of cosmological parameters, we use the CAMB9 (Lewis & Challinor
2007; Lewis & Bridle 2002) cosmological perturbation code to pre-
cisely generate the 21-cm global signal10. The 21-cm global signal
during the dark ages is always negative (corresponding to absorption
relative to the CMB). The 21-cm global signal from the dark ages in

9 http://camb.info
10 To extract the 21-cm global signal from CAMB, we run CAMB twice, once
with temperature units on and once with temperature units off, and take the
ratio of the transfer functions in the two cases.

Figure 2. The evolution of the collisional coupling coefficient Gc as a function
of a (or I as the top G-axis). This also shows Gc)W/)R, which gives the
effective coupling in the case with )R for �r = 0.4.

the standard cosmological model is shown in comparison with other
cases later in this paper (e.g., the black dashed line in Fig. 3). The
peak of the signal is 40.2 mK at a = 16.3 MHz (I = 86).

In addition, the dark ages can be probed by measuring the fluc-
tuations in the 21-cm signal at various length scales, i.e., the power
spectrum. These fluctuations are mainly due to the fluctuations in
the gas density, temperature, and Gc. To accurately predict the 21-
cm power spectrum, we use CAMB (which includes small additional
effects (Lewis & Challinor 2007; Ali-Haïmoud et al. 2014) not in-
cluded in eq. (2)) and add to it redshift space distortions caused
by the line-of-sight component of the peculiar velocity of the gas
(Kaiser 1987; Bharadwaj & Ali 2004; Barkana & Loeb 2005c) and
the light-cone effect (Barkana & Loeb 2006; Mondal et al. 2018), as
detailed in our previous paper (Mondal & Barkana 2023) [Note that
the Alcock-Paczyński effect (Alcock & Paczynski 1979; Ali et al.
2005; Nusser 2005; Barkana 2006) is not relevant since we do not
vary the cosmological parameters in this paper]. The 21-cm power
spectrum from the dark ages for the standard cosmological model
is shown in comparison with other cases later in this paper (e.g.,
the dashed lines in Figs. 8 and 9). The power increases initially as
the adiabatic expansion cools the gas faster than the CMB, and den-
sity fluctuations grow due to gravity. However, eventually the power
decreases as the declining density reduces Gc. For example, the maxi-
mum squared fluctuation�2 at : = 0.1 Mpc�1 is 0.44 mK2 at I = 51.
Measuring the dark ages power spectrum is substantially more dif-
ficult than measuring the global signal, but it contains potentially
much more information (Loeb & Zaldarriaga 2004). As we have re-
cently shown (Mondal & Barkana 2023), for standard cosmology the
global signal offers a relatively accessible first step to observing the
dark ages, with the power spectrum requiring a much greater invest-
ment to get started, but offering far greater potential returns. More
specifically, a single lunar global antenna can make a novel test of
the standard cosmological model, showing whether it can describe
the dark ages or if instead there is some surprise in cosmic history.
An array of antennas (either global antennas for increased integra-
tion time, or an interferometric array) can yield some cosmological
parameters (the overall baryon density and the Helium fraction) at
an accuracy competitive with Planck, and a very large interferometer
can outperform Planck on these parameters as well as the total mass
of neutrinos.
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W
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⇣
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where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).
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�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).
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b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 1. The evolution of the CMB temperature )W and gas temperature )g
and the spin temperature )s (in K unit), as a function of a (or I as the top
G-axis). The total radio background temperature )R for the ERB model with
�r = 0.4 is also shown, along with the corresponding )s.

where )W = 2.725 K (1 + I). Assuming that the optical depth of the
21-cm transition g21 ⌧ 1, this can be simplified to:
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where dHI is the neutral hydrogen density, d̄H is the cosmic mean
density of hydrogen, and Gc is the collisional coupling coefficient.
In Fig. 1 we show the evolution of )W and )g (cyan-blue and light-
orange lines, respectively) as a function of a (and I). Note that )W
falls as 1/a (or [1 + I]), while )g falls faster, eventually (at the lower
redshifts) as 1/a2 (or [1 + I]2).

During the dark ages, the spin temperature of the hydrogen atoms
is pulled towards the temperature of the gas ()s �! )g) by atomic
collisions, while it is pulled towards the temperature of the CMB
()s �! )W) by CMB scattering. The relative importance of these two
effects depends on the density of the gas. Fig. 2 shows the evolution
of Gc as a function of a (or I). The value of Gc is a measure of the
efficiency with which collisions between hydrogen atoms can couple
the spin states of the H � atoms into equilibrium with the regular
(kinetic) gas temperature. The coupling is strong (and so )s ⇡ )g)
roughly until the value Gc = 1 is reached at I = 72.4, after which )s
(which is shown in Fig. 1) begins to approach the CMB temperature.

The sky-averaged 21-cm brightness temperature, as a function of a
(or I), is referred to the 21-cm global (or mean) signal. Experiments
measuring the global signal require a single, well-calibrated antenna.
Therefore, they are relatively simple and advantageous to consider as
the first step toward detecting the dark ages signal. For the standard
set of cosmological parameters, we use the CAMB9 (Lewis & Challinor
2007; Lewis & Bridle 2002) cosmological perturbation code to pre-
cisely generate the 21-cm global signal10. The 21-cm global signal
during the dark ages is always negative (corresponding to absorption
relative to the CMB). The 21-cm global signal from the dark ages in

9 http://camb.info
10 To extract the 21-cm global signal from CAMB, we run CAMB twice, once
with temperature units on and once with temperature units off, and take the
ratio of the transfer functions in the two cases.

Figure 2. The evolution of the collisional coupling coefficient Gc as a function
of a (or I as the top G-axis). This also shows Gc)W/)R, which gives the
effective coupling in the case with )R for �r = 0.4.

the standard cosmological model is shown in comparison with other
cases later in this paper (e.g., the black dashed line in Fig. 3). The
peak of the signal is 40.2 mK at a = 16.3 MHz (I = 86).

In addition, the dark ages can be probed by measuring the fluc-
tuations in the 21-cm signal at various length scales, i.e., the power
spectrum. These fluctuations are mainly due to the fluctuations in
the gas density, temperature, and Gc. To accurately predict the 21-
cm power spectrum, we use CAMB (which includes small additional
effects (Lewis & Challinor 2007; Ali-Haïmoud et al. 2014) not in-
cluded in eq. (2)) and add to it redshift space distortions caused
by the line-of-sight component of the peculiar velocity of the gas
(Kaiser 1987; Bharadwaj & Ali 2004; Barkana & Loeb 2005c) and
the light-cone effect (Barkana & Loeb 2006; Mondal et al. 2018), as
detailed in our previous paper (Mondal & Barkana 2023) [Note that
the Alcock-Paczyński effect (Alcock & Paczynski 1979; Ali et al.
2005; Nusser 2005; Barkana 2006) is not relevant since we do not
vary the cosmological parameters in this paper]. The 21-cm power
spectrum from the dark ages for the standard cosmological model
is shown in comparison with other cases later in this paper (e.g.,
the dashed lines in Figs. 8 and 9). The power increases initially as
the adiabatic expansion cools the gas faster than the CMB, and den-
sity fluctuations grow due to gravity. However, eventually the power
decreases as the declining density reduces Gc. For example, the maxi-
mum squared fluctuation�2 at : = 0.1 Mpc�1 is 0.44 mK2 at I = 51.
Measuring the dark ages power spectrum is substantially more dif-
ficult than measuring the global signal, but it contains potentially
much more information (Loeb & Zaldarriaga 2004). As we have re-
cently shown (Mondal & Barkana 2023), for standard cosmology the
global signal offers a relatively accessible first step to observing the
dark ages, with the power spectrum requiring a much greater invest-
ment to get started, but offering far greater potential returns. More
specifically, a single lunar global antenna can make a novel test of
the standard cosmological model, showing whether it can describe
the dark ages or if instead there is some surprise in cosmic history.
An array of antennas (either global antennas for increased integra-
tion time, or an interferometric array) can yield some cosmological
parameters (the overall baryon density and the Helium fraction) at
an accuracy competitive with Planck, and a very large interferometer
can outperform Planck on these parameters as well as the total mass
of neutrinos.
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3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Table 1. The significance (# of f) of the detection of the standard signal.

Integration time
1,000 hrs 10,000 hrs 100,000 hrs

Global signal 4.12 13.0 41.2
Configuration

G A B C D
Power spectrum 3.01 6.71 66.6 81.6 690

removal (in an optimistic scenario) by adding a term in the shape of
the synchrotron foreground (with the amplitude a free parameter). A
contributing component of this shape in the model cannot be distin-
guished from the foreground. Then, for any signal, we can determine
the statistical significance of its detection (i.e., the detection of the
difference between the expected signal and a zero signal) as follows.
We define the signal as a parameter V times the expected signal (i.e.,
the expected signal corresponds to V=1, and the absence of the signal
to V = 0. We then fit to the data, using a Fisher analysis to extract the
error XV in the measurement of V (assuming all cosmological param-
eters are fixed at their fiducial values as determined by Planck). This
tells us the significance of the detection of the signal relative to zero,
i.e., assuming Gaussian thermal noise, the detection significance is a
number of f equal to 1/XV. For the estimation of noise in the global
signal measurement, we assume a redshift range of 30-200 with a
bandwidth of �a = 1 MHz and explore three different integration
times of Cint = 1,000 hrs, 10,000 hrs and 100,000 hrs. We note that in
practice, an array of global antennas can be used to increase the total
effective integration time.

We first consider the significance of the detection of the standard
global signal, without an ERB. We find that is would be distin-
guishable from zero at 4.12f for Cint of 1,000 hrs, and 41.2f for
100,000 hrs (see the upper panel of Table 1).

For the ERB models, there are two interesting cases to ask: how
well they can be detected (i.e., distinguished from a zero signal),
and how well they can be distinguished from the standard signal
(i.e., showing that the signal is anomalous and must correspond to
exotic physics); in the latter case, the signal model corresponds to the
standard signal plus V times the difference between the ERB model
and the standard model. Fig. 5 shows the value of the 1-f error in
V for both cases, i.e., a detection relative to the standard signal (the
solid curves), and a detection in general (i.e., relative to zero; dashed
curves). Depending on the value of �r, either error can be higher.
The error relative to the standard signal decreases with increasing �r
(as the ERB signal differs more and more from the standard case),
initially going as 1/�r until it saturates roughly beyond �r90. The
error relative to zero signal goes between that for the standard signal
(at small �r) to that for the saturated ERB signal (at large �r), with
a small peak at �r = 0.0204; this is the value of �r with the smallest
significance of detecting the ERB signal (relative to zero signal), the
significance being 2.04f, 6.46f, and 20.4f, for Cint = 1,000 hrs,
10,000 hrs, and 100,000 hrs, respectively.

The significance of detecting the ERB global signal in these two
ways is also listed in Table 2, for various values of �r and Cint.
A 1,000 hr global experiment can detect the saturated ERB signal
at 6.38f significance, and distinguish it from the standard signal at
9.04f. We note that both of these are substantially stronger statistical
results than the detection of the standard signal itself (4.12f in this
case), due to the greater amplitude of the signal in the ERB case.
With Cint = 100,000 hrs, the significance levels would increase ⇥10.

There are some subtleties in these results. First, there is the issue
of how it is possible that distinguishing the ERB signal from the

Figure 5. The value of the 1-f error in V as a function of �r (minimized over
Ir; see the text). We show two detection scenarios: distinguishing the ERB
global signal from the standard case (solid lines), and detecting it relative to
zero signal (dashed lines).

Table 2. The significance (# of f) of detecting the ERB global signal relative
to zero signal or the standard signal.

Integration time
�r 1,000 hrs 10,000 hrs 100,000 hrs

0.001 3.86 12.2 38.6
0.01 2.38 7.50 23.7

Relative to zero 0.1 4.40 13.9 44.0
0.4 5.89 18.6 58.9
375 6.38 20.2 63.8

0.001 0.292 0.922 2.92
0.01 2.22 7.02 22.2

Relative to standard 0.1 6.91 21.8 69.1
0.4 8.45 26.7 84.5
375 9.04 28.6 90.4

standard signal is easier than from zero, in some cases. The answer
is the degeneracy with the foreground term; since the ERB signal
(most clearly in the saturated case) has a shape versus frequency that
is similar to the foreground, it is more difficult to detect it than would
be expected just based on its amplitude, while the standard global
signal has a shape that differs more clearly from the shape of the
foreground. A related subtlety has to do with the redshift range of
the fitting. When measuring the ERB signal relative to the standard
signal, including the highest redshifts adds more information, but this
goes into determining more accurately the foreground term (which
is of little interest) rather than the ERB signal itself; in other words,
XV is higher due to the stronger degeneracy with the foreground
term. Fig. 6 shows the dependence of the error (for ERB detection
relative to the standard model) on the maximum redshift Ir, for the
saturated case (�r = 375). The minimum for all the curves occurs
at Ir = 126. For example, for Cint = 1,000 hrs, the minimum XV is
0.111 while the value for Ir = 200 is 0.119. Thus, actually Fig. 5
shows XV not for Ir = 200 but rather for the value of Ir that gives
the minimum error in each case. We note that Fig. 6 also doubles as
showing the case when the excess background was produced only at
redshift Ir (and not before), and we fit to observations only up to that
Ir. For example, a measurement of the dark ages global 21-cm signal
between redshifts 30 and 56 to the precision of thermal noise from
a 1,000 hour integration would be able to distinguish the saturated
signal from the standard signal at 5f.
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removal (in an optimistic scenario) by adding a term in the shape of
the synchrotron foreground (with the amplitude a free parameter). A
contributing component of this shape in the model cannot be distin-
guished from the foreground. Then, for any signal, we can determine
the statistical significance of its detection (i.e., the detection of the
difference between the expected signal and a zero signal) as follows.
We define the signal as a parameter V times the expected signal (i.e.,
the expected signal corresponds to V=1, and the absence of the signal
to V = 0. We then fit to the data, using a Fisher analysis to extract the
error XV in the measurement of V (assuming all cosmological param-
eters are fixed at their fiducial values as determined by Planck). This
tells us the significance of the detection of the signal relative to zero,
i.e., assuming Gaussian thermal noise, the detection significance is a
number of f equal to 1/XV. For the estimation of noise in the global
signal measurement, we assume a redshift range of 30-200 with a
bandwidth of �a = 1 MHz and explore three different integration
times of Cint = 1,000 hrs, 10,000 hrs and 100,000 hrs. We note that in
practice, an array of global antennas can be used to increase the total
effective integration time.

We first consider the significance of the detection of the standard
global signal, without an ERB. We find that is would be distin-
guishable from zero at 4.12f for Cint of 1,000 hrs, and 41.2f for
100,000 hrs (see the upper panel of Table 1).

For the ERB models, there are two interesting cases to ask: how
well they can be detected (i.e., distinguished from a zero signal),
and how well they can be distinguished from the standard signal
(i.e., showing that the signal is anomalous and must correspond to
exotic physics); in the latter case, the signal model corresponds to the
standard signal plus V times the difference between the ERB model
and the standard model. Fig. 5 shows the value of the 1-f error in
V for both cases, i.e., a detection relative to the standard signal (the
solid curves), and a detection in general (i.e., relative to zero; dashed
curves). Depending on the value of �r, either error can be higher.
The error relative to the standard signal decreases with increasing �r
(as the ERB signal differs more and more from the standard case),
initially going as 1/�r until it saturates roughly beyond �r90. The
error relative to zero signal goes between that for the standard signal
(at small �r) to that for the saturated ERB signal (at large �r), with
a small peak at �r = 0.0204; this is the value of �r with the smallest
significance of detecting the ERB signal (relative to zero signal), the
significance being 2.04f, 6.46f, and 20.4f, for Cint = 1,000 hrs,
10,000 hrs, and 100,000 hrs, respectively.

The significance of detecting the ERB global signal in these two
ways is also listed in Table 2, for various values of �r and Cint.
A 1,000 hr global experiment can detect the saturated ERB signal
at 6.38f significance, and distinguish it from the standard signal at
9.04f. We note that both of these are substantially stronger statistical
results than the detection of the standard signal itself (4.12f in this
case), due to the greater amplitude of the signal in the ERB case.
With Cint = 100,000 hrs, the significance levels would increase ⇥10.

There are some subtleties in these results. First, there is the issue
of how it is possible that distinguishing the ERB signal from the

Figure 5. The value of the 1-f error in V as a function of �r (minimized over
Ir; see the text). We show two detection scenarios: distinguishing the ERB
global signal from the standard case (solid lines), and detecting it relative to
zero signal (dashed lines).

Table 2. The significance (# of f) of detecting the ERB global signal relative
to zero signal or the standard signal.

Integration time
�r 1,000 hrs 10,000 hrs 100,000 hrs

0.001 3.86 12.2 38.6
0.01 2.38 7.50 23.7

Relative to zero 0.1 4.40 13.9 44.0
0.4 5.89 18.6 58.9
375 6.38 20.2 63.8

0.001 0.292 0.922 2.92
0.01 2.22 7.02 22.2

Relative to standard 0.1 6.91 21.8 69.1
0.4 8.45 26.7 84.5
375 9.04 28.6 90.4

standard signal is easier than from zero, in some cases. The answer
is the degeneracy with the foreground term; since the ERB signal
(most clearly in the saturated case) has a shape versus frequency that
is similar to the foreground, it is more difficult to detect it than would
be expected just based on its amplitude, while the standard global
signal has a shape that differs more clearly from the shape of the
foreground. A related subtlety has to do with the redshift range of
the fitting. When measuring the ERB signal relative to the standard
signal, including the highest redshifts adds more information, but this
goes into determining more accurately the foreground term (which
is of little interest) rather than the ERB signal itself; in other words,
XV is higher due to the stronger degeneracy with the foreground
term. Fig. 6 shows the dependence of the error (for ERB detection
relative to the standard model) on the maximum redshift Ir, for the
saturated case (�r = 375). The minimum for all the curves occurs
at Ir = 126. For example, for Cint = 1,000 hrs, the minimum XV is
0.111 while the value for Ir = 200 is 0.119. Thus, actually Fig. 5
shows XV not for Ir = 200 but rather for the value of Ir that gives
the minimum error in each case. We note that Fig. 6 also doubles as
showing the case when the excess background was produced only at
redshift Ir (and not before), and we fit to observations only up to that
Ir. For example, a measurement of the dark ages global 21-cm signal
between redshifts 30 and 56 to the precision of thermal noise from
a 1,000 hour integration would be able to distinguish the saturated
signal from the standard signal at 5f.
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from

Gc
1 + Gc

✓
1 �

)W

)g

◆

to
Gc)W/)R

1 + Gc)W/)R

✓
1 � )R

)g

◆
.

Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of

)
sat
b = �54.0 mK

✓
⌦b⌘

2

0.02242

◆ ✓
⌦m⌘

2

0.1424

◆� 1
2
✓
1 + I

40

◆ 1
2
Gc
)W

)g
, (4)

consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 1. The evolution of the CMB temperature )W and gas temperature )g
and the spin temperature )s (in K unit), as a function of a (or I as the top
G-axis). The total radio background temperature )R for the ERB model with
�r = 0.4 is also shown, along with the corresponding )s.

where )W = 2.725 K (1 + I). Assuming that the optical depth of the
21-cm transition g21 ⌧ 1, this can be simplified to:
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where dHI is the neutral hydrogen density, d̄H is the cosmic mean
density of hydrogen, and Gc is the collisional coupling coefficient.
In Fig. 1 we show the evolution of )W and )g (cyan-blue and light-
orange lines, respectively) as a function of a (and I). Note that )W
falls as 1/a (or [1 + I]), while )g falls faster, eventually (at the lower
redshifts) as 1/a2 (or [1 + I]2).

During the dark ages, the spin temperature of the hydrogen atoms
is pulled towards the temperature of the gas ()s �! )g) by atomic
collisions, while it is pulled towards the temperature of the CMB
()s �! )W) by CMB scattering. The relative importance of these two
effects depends on the density of the gas. Fig. 2 shows the evolution
of Gc as a function of a (or I). The value of Gc is a measure of the
efficiency with which collisions between hydrogen atoms can couple
the spin states of the H � atoms into equilibrium with the regular
(kinetic) gas temperature. The coupling is strong (and so )s ⇡ )g)
roughly until the value Gc = 1 is reached at I = 72.4, after which )s
(which is shown in Fig. 1) begins to approach the CMB temperature.

The sky-averaged 21-cm brightness temperature, as a function of a
(or I), is referred to the 21-cm global (or mean) signal. Experiments
measuring the global signal require a single, well-calibrated antenna.
Therefore, they are relatively simple and advantageous to consider as
the first step toward detecting the dark ages signal. For the standard
set of cosmological parameters, we use the CAMB9 (Lewis & Challinor
2007; Lewis & Bridle 2002) cosmological perturbation code to pre-
cisely generate the 21-cm global signal10. The 21-cm global signal
during the dark ages is always negative (corresponding to absorption
relative to the CMB). The 21-cm global signal from the dark ages in

9 http://camb.info
10 To extract the 21-cm global signal from CAMB, we run CAMB twice, once
with temperature units on and once with temperature units off, and take the
ratio of the transfer functions in the two cases.

Figure 2. The evolution of the collisional coupling coefficient Gc as a function
of a (or I as the top G-axis). This also shows Gc)W/)R, which gives the
effective coupling in the case with )R for �r = 0.4.

the standard cosmological model is shown in comparison with other
cases later in this paper (e.g., the black dashed line in Fig. 3). The
peak of the signal is 40.2 mK at a = 16.3 MHz (I = 86).

In addition, the dark ages can be probed by measuring the fluc-
tuations in the 21-cm signal at various length scales, i.e., the power
spectrum. These fluctuations are mainly due to the fluctuations in
the gas density, temperature, and Gc. To accurately predict the 21-
cm power spectrum, we use CAMB (which includes small additional
effects (Lewis & Challinor 2007; Ali-Haïmoud et al. 2014) not in-
cluded in eq. (2)) and add to it redshift space distortions caused
by the line-of-sight component of the peculiar velocity of the gas
(Kaiser 1987; Bharadwaj & Ali 2004; Barkana & Loeb 2005c) and
the light-cone effect (Barkana & Loeb 2006; Mondal et al. 2018), as
detailed in our previous paper (Mondal & Barkana 2023) [Note that
the Alcock-Paczyński effect (Alcock & Paczynski 1979; Ali et al.
2005; Nusser 2005; Barkana 2006) is not relevant since we do not
vary the cosmological parameters in this paper]. The 21-cm power
spectrum from the dark ages for the standard cosmological model
is shown in comparison with other cases later in this paper (e.g.,
the dashed lines in Figs. 8 and 9). The power increases initially as
the adiabatic expansion cools the gas faster than the CMB, and den-
sity fluctuations grow due to gravity. However, eventually the power
decreases as the declining density reduces Gc. For example, the maxi-
mum squared fluctuation�2 at : = 0.1 Mpc�1 is 0.44 mK2 at I = 51.
Measuring the dark ages power spectrum is substantially more dif-
ficult than measuring the global signal, but it contains potentially
much more information (Loeb & Zaldarriaga 2004). As we have re-
cently shown (Mondal & Barkana 2023), for standard cosmology the
global signal offers a relatively accessible first step to observing the
dark ages, with the power spectrum requiring a much greater invest-
ment to get started, but offering far greater potential returns. More
specifically, a single lunar global antenna can make a novel test of
the standard cosmological model, showing whether it can describe
the dark ages or if instead there is some surprise in cosmic history.
An array of antennas (either global antennas for increased integra-
tion time, or an interferometric array) can yield some cosmological
parameters (the overall baryon density and the Helium fraction) at
an accuracy competitive with Planck, and a very large interferometer
can outperform Planck on these parameters as well as the total mass
of neutrinos.
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Table 1. The significance (# of f) of the detection of the standard signal.

Integration time
1,000 hrs 10,000 hrs 100,000 hrs

Global signal 4.12 13.0 41.2
Configuration

G A B C D
Power spectrum 3.01 6.71 66.6 81.6 690

removal (in an optimistic scenario) by adding a term in the shape of
the synchrotron foreground (with the amplitude a free parameter). A
contributing component of this shape in the model cannot be distin-
guished from the foreground. Then, for any signal, we can determine
the statistical significance of its detection (i.e., the detection of the
difference between the expected signal and a zero signal) as follows.
We define the signal as a parameter V times the expected signal (i.e.,
the expected signal corresponds to V=1, and the absence of the signal
to V = 0. We then fit to the data, using a Fisher analysis to extract the
error XV in the measurement of V (assuming all cosmological param-
eters are fixed at their fiducial values as determined by Planck). This
tells us the significance of the detection of the signal relative to zero,
i.e., assuming Gaussian thermal noise, the detection significance is a
number of f equal to 1/XV. For the estimation of noise in the global
signal measurement, we assume a redshift range of 30-200 with a
bandwidth of �a = 1 MHz and explore three different integration
times of Cint = 1,000 hrs, 10,000 hrs and 100,000 hrs. We note that in
practice, an array of global antennas can be used to increase the total
effective integration time.

We first consider the significance of the detection of the standard
global signal, without an ERB. We find that is would be distin-
guishable from zero at 4.12f for Cint of 1,000 hrs, and 41.2f for
100,000 hrs (see the upper panel of Table 1).

For the ERB models, there are two interesting cases to ask: how
well they can be detected (i.e., distinguished from a zero signal),
and how well they can be distinguished from the standard signal
(i.e., showing that the signal is anomalous and must correspond to
exotic physics); in the latter case, the signal model corresponds to the
standard signal plus V times the difference between the ERB model
and the standard model. Fig. 5 shows the value of the 1-f error in
V for both cases, i.e., a detection relative to the standard signal (the
solid curves), and a detection in general (i.e., relative to zero; dashed
curves). Depending on the value of �r, either error can be higher.
The error relative to the standard signal decreases with increasing �r
(as the ERB signal differs more and more from the standard case),
initially going as 1/�r until it saturates roughly beyond �r90. The
error relative to zero signal goes between that for the standard signal
(at small �r) to that for the saturated ERB signal (at large �r), with
a small peak at �r = 0.0204; this is the value of �r with the smallest
significance of detecting the ERB signal (relative to zero signal), the
significance being 2.04f, 6.46f, and 20.4f, for Cint = 1,000 hrs,
10,000 hrs, and 100,000 hrs, respectively.

The significance of detecting the ERB global signal in these two
ways is also listed in Table 2, for various values of �r and Cint.
A 1,000 hr global experiment can detect the saturated ERB signal
at 6.38f significance, and distinguish it from the standard signal at
9.04f. We note that both of these are substantially stronger statistical
results than the detection of the standard signal itself (4.12f in this
case), due to the greater amplitude of the signal in the ERB case.
With Cint = 100,000 hrs, the significance levels would increase ⇥10.

There are some subtleties in these results. First, there is the issue
of how it is possible that distinguishing the ERB signal from the

Figure 5. The value of the 1-f error in V as a function of �r (minimized over
Ir; see the text). We show two detection scenarios: distinguishing the ERB
global signal from the standard case (solid lines), and detecting it relative to
zero signal (dashed lines).

Table 2. The significance (# of f) of detecting the ERB global signal relative
to zero signal or the standard signal.

Integration time
�r 1,000 hrs 10,000 hrs 100,000 hrs

0.001 3.86 12.2 38.6
0.01 2.38 7.50 23.7

Relative to zero 0.1 4.40 13.9 44.0
0.4 5.89 18.6 58.9
375 6.38 20.2 63.8

0.001 0.292 0.922 2.92
0.01 2.22 7.02 22.2

Relative to standard 0.1 6.91 21.8 69.1
0.4 8.45 26.7 84.5
375 9.04 28.6 90.4

standard signal is easier than from zero, in some cases. The answer
is the degeneracy with the foreground term; since the ERB signal
(most clearly in the saturated case) has a shape versus frequency that
is similar to the foreground, it is more difficult to detect it than would
be expected just based on its amplitude, while the standard global
signal has a shape that differs more clearly from the shape of the
foreground. A related subtlety has to do with the redshift range of
the fitting. When measuring the ERB signal relative to the standard
signal, including the highest redshifts adds more information, but this
goes into determining more accurately the foreground term (which
is of little interest) rather than the ERB signal itself; in other words,
XV is higher due to the stronger degeneracy with the foreground
term. Fig. 6 shows the dependence of the error (for ERB detection
relative to the standard model) on the maximum redshift Ir, for the
saturated case (�r = 375). The minimum for all the curves occurs
at Ir = 126. For example, for Cint = 1,000 hrs, the minimum XV is
0.111 while the value for Ir = 200 is 0.119. Thus, actually Fig. 5
shows XV not for Ir = 200 but rather for the value of Ir that gives
the minimum error in each case. We note that Fig. 6 also doubles as
showing the case when the excess background was produced only at
redshift Ir (and not before), and we fit to observations only up to that
Ir. For example, a measurement of the dark ages global 21-cm signal
between redshifts 30 and 56 to the precision of thermal noise from
a 1,000 hour integration would be able to distinguish the saturated
signal from the standard signal at 5f.

MNRAS 000, 1–10 (2023)

Exotic models with the dark ages 21-cm signal 5

Table 1. The significance (# of f) of the detection of the standard signal.

Integration time
1,000 hrs 10,000 hrs 100,000 hrs

Global signal 4.12 13.0 41.2
Configuration

G A B C D
Power spectrum 3.01 6.71 66.6 81.6 690

removal (in an optimistic scenario) by adding a term in the shape of
the synchrotron foreground (with the amplitude a free parameter). A
contributing component of this shape in the model cannot be distin-
guished from the foreground. Then, for any signal, we can determine
the statistical significance of its detection (i.e., the detection of the
difference between the expected signal and a zero signal) as follows.
We define the signal as a parameter V times the expected signal (i.e.,
the expected signal corresponds to V=1, and the absence of the signal
to V = 0. We then fit to the data, using a Fisher analysis to extract the
error XV in the measurement of V (assuming all cosmological param-
eters are fixed at their fiducial values as determined by Planck). This
tells us the significance of the detection of the signal relative to zero,
i.e., assuming Gaussian thermal noise, the detection significance is a
number of f equal to 1/XV. For the estimation of noise in the global
signal measurement, we assume a redshift range of 30-200 with a
bandwidth of �a = 1 MHz and explore three different integration
times of Cint = 1,000 hrs, 10,000 hrs and 100,000 hrs. We note that in
practice, an array of global antennas can be used to increase the total
effective integration time.

We first consider the significance of the detection of the standard
global signal, without an ERB. We find that is would be distin-
guishable from zero at 4.12f for Cint of 1,000 hrs, and 41.2f for
100,000 hrs (see the upper panel of Table 1).
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exotic physics); in the latter case, the signal model corresponds to the
standard signal plus V times the difference between the ERB model
and the standard model. Fig. 5 shows the value of the 1-f error in
V for both cases, i.e., a detection relative to the standard signal (the
solid curves), and a detection in general (i.e., relative to zero; dashed
curves). Depending on the value of �r, either error can be higher.
The error relative to the standard signal decreases with increasing �r
(as the ERB signal differs more and more from the standard case),
initially going as 1/�r until it saturates roughly beyond �r90. The
error relative to zero signal goes between that for the standard signal
(at small �r) to that for the saturated ERB signal (at large �r), with
a small peak at �r = 0.0204; this is the value of �r with the smallest
significance of detecting the ERB signal (relative to zero signal), the
significance being 2.04f, 6.46f, and 20.4f, for Cint = 1,000 hrs,
10,000 hrs, and 100,000 hrs, respectively.

The significance of detecting the ERB global signal in these two
ways is also listed in Table 2, for various values of �r and Cint.
A 1,000 hr global experiment can detect the saturated ERB signal
at 6.38f significance, and distinguish it from the standard signal at
9.04f. We note that both of these are substantially stronger statistical
results than the detection of the standard signal itself (4.12f in this
case), due to the greater amplitude of the signal in the ERB case.
With Cint = 100,000 hrs, the significance levels would increase ⇥10.

There are some subtleties in these results. First, there is the issue
of how it is possible that distinguishing the ERB signal from the

Figure 5. The value of the 1-f error in V as a function of �r (minimized over
Ir; see the text). We show two detection scenarios: distinguishing the ERB
global signal from the standard case (solid lines), and detecting it relative to
zero signal (dashed lines).

Table 2. The significance (# of f) of detecting the ERB global signal relative
to zero signal or the standard signal.

Integration time
�r 1,000 hrs 10,000 hrs 100,000 hrs

0.001 3.86 12.2 38.6
0.01 2.38 7.50 23.7

Relative to zero 0.1 4.40 13.9 44.0
0.4 5.89 18.6 58.9
375 6.38 20.2 63.8

0.001 0.292 0.922 2.92
0.01 2.22 7.02 22.2

Relative to standard 0.1 6.91 21.8 69.1
0.4 8.45 26.7 84.5
375 9.04 28.6 90.4

standard signal is easier than from zero, in some cases. The answer
is the degeneracy with the foreground term; since the ERB signal
(most clearly in the saturated case) has a shape versus frequency that
is similar to the foreground, it is more difficult to detect it than would
be expected just based on its amplitude, while the standard global
signal has a shape that differs more clearly from the shape of the
foreground. A related subtlety has to do with the redshift range of
the fitting. When measuring the ERB signal relative to the standard
signal, including the highest redshifts adds more information, but this
goes into determining more accurately the foreground term (which
is of little interest) rather than the ERB signal itself; in other words,
XV is higher due to the stronger degeneracy with the foreground
term. Fig. 6 shows the dependence of the error (for ERB detection
relative to the standard model) on the maximum redshift Ir, for the
saturated case (�r = 375). The minimum for all the curves occurs
at Ir = 126. For example, for Cint = 1,000 hrs, the minimum XV is
0.111 while the value for Ir = 200 is 0.119. Thus, actually Fig. 5
shows XV not for Ir = 200 but rather for the value of Ir that gives
the minimum error in each case. We note that Fig. 6 also doubles as
showing the case when the excess background was produced only at
redshift Ir (and not before), and we fit to observations only up to that
Ir. For example, a measurement of the dark ages global 21-cm signal
between redshifts 30 and 56 to the precision of thermal noise from
a 1,000 hour integration would be able to distinguish the saturated
signal from the standard signal at 5f.
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Figure 7. The 21-cm power spectrum at : = 0.1 Mpc�1 as a function of a (or
I as the top G-axis) for the standard ⇤CDM model (black dashed line) and
the excess radio model (solid lines) at various �r. We also show the 1f noise
(thermal plus cosmic variance) for our G configuration (grey dotted line).

Figure 8. The 21-cm power spectrum as a function of wavenumber : during
the dark ages, for the standard ⇤CDM model (long dashed lines) and the ERB
model (solid lines) with �r = 375, at redshifts I = [150, 125, 75, 50, 40,
30]. We also show the 1f noise (thermal plus cosmic variance) for our G
configuration (dotted lines), at I = 75 and 40 (for bins with �(ln a) = 1 and
�(ln : ) = 1).

of wavenumber : at various redshifts during the dark ages, for the
standard ⇤CDM model and for the saturated ERB model with �r =
375. The shapes of the power spectra are almost the same for the
standard and ERB models (roughly following the shape of the density
power spectrum), but the amplitude behaves quite differently. We also
show in Fig. 8 the 1f noise (thermal plus cosmic variance) for the G
configuration, at I = 75 and 40. As the noise increases rapidly with
redshift, and the maximum signal-to-noise ratio (S/N) occurs at the
minimum redshift we consider, i.e., I = 30.

Fig. 9 again shows the 21-cm power spectrum but now in the
other cut in terms of the two variables, i.e., as a function of a (or
I) at various wavenumbers, for the standard ⇤CDM model and for
the saturated ERB model. Here it is easier to see the difference
between the two models. For the standard case, as discussed above,
the power spectrum increases initially with time as the amplitude of
the signal increases due to the gas cooling faster than the CMB, and
as fluctuations increase due to gravity. However, the power spectrum
then decreases as the declining density reduces Gc. In contrast, for

Figure 9. The 21-cm power spectrum as a function of a (or I as the top
G-axis) for the standard ⇤CDM model (long dashed lines) and the excess
radio model (solid lines) with �r = 375, at wavenumber values : = [0.01,
0.04, 0.1, 0.4, 1.0, 4.0] Mpc�1. We also show the 1f noise (thermal plus
cosmic variance) for our G configuration (dotted lines), at : = 0.1 Mpc�1

and 1 Mpc�1.

the ERB model, the strong radio background at high redshifts results
in the power spectrum decreasing monotonically with time over most
of the redshift range. As expected, the power spectrum also increases
as we go from large scales to small scales. We also show the 1f
noise (thermal plus cosmic variance) for the G configuration, at
: = 0.1 Mpc�1 and 1 Mpc�1.

Before we consider the power spectrum measurements for the ERB
case, as in the global case we first consider the detection significance
of the standard power spectrum signal (relative to zero signal). The
standard power spectra would be distinguishable from zero at 3.01f
for the G configuration, going up to 690f for configuration D (see
the lower panel of Table 1). In terms of the detection significance,
each configuration is comparable to a certain integration time for
a global experiment: G [534 hrs], A [2,650 hrs], B [261,000 hrs], C
[392,000 hrs], and D [28.0 million hrs]. This demonstrates our con-
clusion from Mondal & Barkana (2023) that it is more difficult to
start with the 21-cm power spectrum (as even the G configuration
requires quite a large collecting area), but eventually interferometers
can gather far more cosmological information than is plausible for
global experiments.

Next we calculate the significance with which the power spectrum
of ERB models can be distinguished from the standard cosmological
model, or detected (distinguished from zero signal). Fig. 10 shows the
significance of the detection (for these two scenarios) as a function of
�r, for the various observational configurations. Here the significance
in both scenarios monotonically increases with �r, and it is always
easier to detect an ERB signal than to distinguish it from the standard
case. For detecting the signal, the significance increases smoothly
from the value for the standard case (at low �r) to that for the saturated
ERB case (at high �r), with a transition occurring over the range of
�r ⇠ 0.1 � 1. For distinguishing the signal from the standard case,
similarly to the global signal, the significance increases roughly as
�r until it saturates beyond ⇠ �r90.

The significance of detecting the ERB power spectrum in these two
ways is also listed in Table 5, for various values of �r and the vari-
ous configurations. With the minimal G configuration, the saturated
ERB signal can be detected at 8.73f significance, and distinguished
from the standard case at 5.94f. These values are comparable to
the 1,000 hour global case (Table 2), and again significantly stronger
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from

Gc
1 + Gc

✓
1 �

)W

)g

◆

to
Gc)W/)R

1 + Gc)W/)R

✓
1 � )R

)g

◆
.

Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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(its 2f upper limit) gives an upper limit of 375 on the possible value
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Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
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and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
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Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 1. The evolution of the CMB temperature )W and gas temperature )g
and the spin temperature )s (in K unit), as a function of a (or I as the top
G-axis). The total radio background temperature )R for the ERB model with
�r = 0.4 is also shown, along with the corresponding )s.

where )W = 2.725 K (1 + I). Assuming that the optical depth of the
21-cm transition g21 ⌧ 1, this can be simplified to:
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where dHI is the neutral hydrogen density, d̄H is the cosmic mean
density of hydrogen, and Gc is the collisional coupling coefficient.
In Fig. 1 we show the evolution of )W and )g (cyan-blue and light-
orange lines, respectively) as a function of a (and I). Note that )W
falls as 1/a (or [1 + I]), while )g falls faster, eventually (at the lower
redshifts) as 1/a2 (or [1 + I]2).

During the dark ages, the spin temperature of the hydrogen atoms
is pulled towards the temperature of the gas ()s �! )g) by atomic
collisions, while it is pulled towards the temperature of the CMB
()s �! )W) by CMB scattering. The relative importance of these two
effects depends on the density of the gas. Fig. 2 shows the evolution
of Gc as a function of a (or I). The value of Gc is a measure of the
efficiency with which collisions between hydrogen atoms can couple
the spin states of the H � atoms into equilibrium with the regular
(kinetic) gas temperature. The coupling is strong (and so )s ⇡ )g)
roughly until the value Gc = 1 is reached at I = 72.4, after which )s
(which is shown in Fig. 1) begins to approach the CMB temperature.

The sky-averaged 21-cm brightness temperature, as a function of a
(or I), is referred to the 21-cm global (or mean) signal. Experiments
measuring the global signal require a single, well-calibrated antenna.
Therefore, they are relatively simple and advantageous to consider as
the first step toward detecting the dark ages signal. For the standard
set of cosmological parameters, we use the CAMB9 (Lewis & Challinor
2007; Lewis & Bridle 2002) cosmological perturbation code to pre-
cisely generate the 21-cm global signal10. The 21-cm global signal
during the dark ages is always negative (corresponding to absorption
relative to the CMB). The 21-cm global signal from the dark ages in

9 http://camb.info
10 To extract the 21-cm global signal from CAMB, we run CAMB twice, once
with temperature units on and once with temperature units off, and take the
ratio of the transfer functions in the two cases.

Figure 2. The evolution of the collisional coupling coefficient Gc as a function
of a (or I as the top G-axis). This also shows Gc)W/)R, which gives the
effective coupling in the case with )R for �r = 0.4.

the standard cosmological model is shown in comparison with other
cases later in this paper (e.g., the black dashed line in Fig. 3). The
peak of the signal is 40.2 mK at a = 16.3 MHz (I = 86).

In addition, the dark ages can be probed by measuring the fluc-
tuations in the 21-cm signal at various length scales, i.e., the power
spectrum. These fluctuations are mainly due to the fluctuations in
the gas density, temperature, and Gc. To accurately predict the 21-
cm power spectrum, we use CAMB (which includes small additional
effects (Lewis & Challinor 2007; Ali-Haïmoud et al. 2014) not in-
cluded in eq. (2)) and add to it redshift space distortions caused
by the line-of-sight component of the peculiar velocity of the gas
(Kaiser 1987; Bharadwaj & Ali 2004; Barkana & Loeb 2005c) and
the light-cone effect (Barkana & Loeb 2006; Mondal et al. 2018), as
detailed in our previous paper (Mondal & Barkana 2023) [Note that
the Alcock-Paczyński effect (Alcock & Paczynski 1979; Ali et al.
2005; Nusser 2005; Barkana 2006) is not relevant since we do not
vary the cosmological parameters in this paper]. The 21-cm power
spectrum from the dark ages for the standard cosmological model
is shown in comparison with other cases later in this paper (e.g.,
the dashed lines in Figs. 8 and 9). The power increases initially as
the adiabatic expansion cools the gas faster than the CMB, and den-
sity fluctuations grow due to gravity. However, eventually the power
decreases as the declining density reduces Gc. For example, the maxi-
mum squared fluctuation�2 at : = 0.1 Mpc�1 is 0.44 mK2 at I = 51.
Measuring the dark ages power spectrum is substantially more dif-
ficult than measuring the global signal, but it contains potentially
much more information (Loeb & Zaldarriaga 2004). As we have re-
cently shown (Mondal & Barkana 2023), for standard cosmology the
global signal offers a relatively accessible first step to observing the
dark ages, with the power spectrum requiring a much greater invest-
ment to get started, but offering far greater potential returns. More
specifically, a single lunar global antenna can make a novel test of
the standard cosmological model, showing whether it can describe
the dark ages or if instead there is some surprise in cosmic history.
An array of antennas (either global antennas for increased integra-
tion time, or an interferometric array) can yield some cosmological
parameters (the overall baryon density and the Helium fraction) at
an accuracy competitive with Planck, and a very large interferometer
can outperform Planck on these parameters as well as the total mass
of neutrinos.
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 10. The significance (# of f) of the detection (i.e., 1/XV) as a function
of �r, for 21-cm power spectrum measurements. We show two detection
scenarios: distinguishing the ERB global signal from the standard case (solid
lines), and detecting it relative to zero signal (dashed lines).

Table 5. The significance (# of f) of detecting the ERB 21-cm power spec-
trum relative to zero signal or the standard signal.

Configuration
Relative to �r G A B C D

0.001 3.03 6.76 67.1 82.2 695
0.01 3.23 7.20 71.6 87.8 747

Zero 0.1 4.76 10.7 106 132 1153
0.4 6.73 15.1 150 188 1661
375 8.73 19.6 195 244 2156

0.001 0.0267 0.0606 0.605 0.769 7.10
0.01 0.266 0.604 6.02 7.67 70.9

Standard 0.1 1.98 4.50 44.8 57.3 530
0.4 3.98 9.01 89.8 114 1047
375 5.94 13.4 134 169 1532

statistically than the detection of the standard case itself (3.01f in
the same configuration). In the A configuration, the significance of
the two types is nearly as good as the 10,000 hour global case, while
the B and C configurations exceed the 100,000 hour global case (and
D is much better still). Note that configuration C somewhat outper-
forms B, due to its higher angular resolution. These comparisons
between the statistical strengths of the global signal and power spec-
trum for the ERB model are generally similar to the comparison for
the standard cosmological model (Table 1).

For distinguishing the ERB model from the standard case, Table 6
lists the minimum �r values for various levels of significance, for the
various observational configurations. For example, configuration G
can detect a minimum value of �r = 1.06 at 5f, and the detection
threshold can be improved by an order of magnitude in each step
of going to A, to B or C, and then to D, which can go down to
�r = 0.000708. Generally, the global signal is relatively more sensi-
tive to low values of �r (relative to high �r) compared to the power
spectrum. This is likely due to the different redshift dependence.
Since the thermal noise for the power spectrum measurement goes as
the square of system temperature )2

sys, it increases much faster with
redshift than the signal, unlike the global signal case. Therefore, the
power spectrum mostly measures lower I, while the global signal can
take advantage of higher redshifts, where the ERB signal depends
most strongly on the amplitude �r. Of course, the global and fluctu-

Table 6. The minimum value of �r (in units of 10�2) that allows the ERB
21-cm power spectrum to be distinguished from the standard (�r = 0) case,
at various levels of statistical significance.

Detection limit
Configuration 1f 2f 3f 5f

G 4.19 10.5 21.3 106
A 1.69 3.60 5.92 12.1

�r [10�2 ] B 0.164 0.328 0.493 0.829
C 0.130 0.258 0.387 0.648
D 0.0153 0.0292 0.0431 0.0708

Table 7. The mDM models that we use to illustrate our results, in terms of
the model parameters 5X (millicharged fraction of the DM), n (millicharged
electric charge) and <X (millicharged particle mass).

Model
A B C D E

5X 0.004 0.004 0.004 0.001 0.001
n [10�4 e] 1.0 0.1 0.1 0.3 0.1
<X [MeV] 10 3 1 5 1

ation measurements are observationally independent, so ideal would
be to have both measurements provide a useful cross-check.

4 THE MILLICHARGED DARK MATTER MODEL

As noted in the introduction, one way of explaining the tentative
EDGES absorption feature is by reducing the baryon temperature
through baryon-DM scattering (Barkana 2018). Any particle physics
model that supplies such a new scattering interaction faces addi-
tional constraints, such as baryon self-interaction, i.e., a fifth force
(Berlin et al. 2018; Barkana et al. 2018). A model that satisfies these
constraints is millicharged dark matter (mDM), in which a small
fraction of the dark matter particles have a tiny electric charge, and
Coulomb scattering is responsible for the energy transfer (Muñoz &
Loeb 2018). A strong correlation between baryon temperature and
the baryon-DM relative streaming velocity tends to imprint large
acoustic oscillations on the 21-cm signal (Barkana 2018), but this
signature is erased by drag at early times throughout the mDM pa-
rameter space that remains consistent with observational constraints,
particularly from the CMB (Kovetz et al. 2018). It is possible to re-
store this signature in an interacting millicharged dark matter model
(Liu et al. 2019; Barkana et al. 2022), which is more elaborate (adding
a long-range interaction between the millicharged part and the rest
of the DM) but also viable over a much wider range of parameters.

Here we consider the dark ages global 21-cm signal from the
simpler, non-interacting mDM model. The parameters of this model
are the fraction of the DM mass density that is millicharged ( 5X),
the electric charge of the millicharged particles (n , a fraction of the
electron charge 4), and the mass of the millicharged particles (<X).
We consider five different models with parameter values (see Table 7)
that roughly span the range that is allowed by current constraints and
that can explain the EDGES result (Kovetz et al. 2018).

Fig. 11 shows the size of the global 21-cm signal from the dark
ages as a function of a (and I), for the mDM models considered in
this this work. We also show the standard case for comparison, and
the instrumental noise for integration time Cint =1,000 hrs. Unlike the
ERB model, the mDM models have a shape versus frequency that
is generally similar to that of the standard model, except that the
variation with redshift is stronger. In the mDM model, the colder gas
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from

Gc
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✓
1 �

)W

)g
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1 + Gc)W/)R

✓
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):
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h
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⇣
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, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 1. The evolution of the CMB temperature )W and gas temperature )g
and the spin temperature )s (in K unit), as a function of a (or I as the top
G-axis). The total radio background temperature )R for the ERB model with
�r = 0.4 is also shown, along with the corresponding )s.

where )W = 2.725 K (1 + I). Assuming that the optical depth of the
21-cm transition g21 ⌧ 1, this can be simplified to:
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where dHI is the neutral hydrogen density, d̄H is the cosmic mean
density of hydrogen, and Gc is the collisional coupling coefficient.
In Fig. 1 we show the evolution of )W and )g (cyan-blue and light-
orange lines, respectively) as a function of a (and I). Note that )W
falls as 1/a (or [1 + I]), while )g falls faster, eventually (at the lower
redshifts) as 1/a2 (or [1 + I]2).

During the dark ages, the spin temperature of the hydrogen atoms
is pulled towards the temperature of the gas ()s �! )g) by atomic
collisions, while it is pulled towards the temperature of the CMB
()s �! )W) by CMB scattering. The relative importance of these two
effects depends on the density of the gas. Fig. 2 shows the evolution
of Gc as a function of a (or I). The value of Gc is a measure of the
efficiency with which collisions between hydrogen atoms can couple
the spin states of the H � atoms into equilibrium with the regular
(kinetic) gas temperature. The coupling is strong (and so )s ⇡ )g)
roughly until the value Gc = 1 is reached at I = 72.4, after which )s
(which is shown in Fig. 1) begins to approach the CMB temperature.

The sky-averaged 21-cm brightness temperature, as a function of a
(or I), is referred to the 21-cm global (or mean) signal. Experiments
measuring the global signal require a single, well-calibrated antenna.
Therefore, they are relatively simple and advantageous to consider as
the first step toward detecting the dark ages signal. For the standard
set of cosmological parameters, we use the CAMB9 (Lewis & Challinor
2007; Lewis & Bridle 2002) cosmological perturbation code to pre-
cisely generate the 21-cm global signal10. The 21-cm global signal
during the dark ages is always negative (corresponding to absorption
relative to the CMB). The 21-cm global signal from the dark ages in

9 http://camb.info
10 To extract the 21-cm global signal from CAMB, we run CAMB twice, once
with temperature units on and once with temperature units off, and take the
ratio of the transfer functions in the two cases.

Figure 2. The evolution of the collisional coupling coefficient Gc as a function
of a (or I as the top G-axis). This also shows Gc)W/)R, which gives the
effective coupling in the case with )R for �r = 0.4.

the standard cosmological model is shown in comparison with other
cases later in this paper (e.g., the black dashed line in Fig. 3). The
peak of the signal is 40.2 mK at a = 16.3 MHz (I = 86).

In addition, the dark ages can be probed by measuring the fluc-
tuations in the 21-cm signal at various length scales, i.e., the power
spectrum. These fluctuations are mainly due to the fluctuations in
the gas density, temperature, and Gc. To accurately predict the 21-
cm power spectrum, we use CAMB (which includes small additional
effects (Lewis & Challinor 2007; Ali-Haïmoud et al. 2014) not in-
cluded in eq. (2)) and add to it redshift space distortions caused
by the line-of-sight component of the peculiar velocity of the gas
(Kaiser 1987; Bharadwaj & Ali 2004; Barkana & Loeb 2005c) and
the light-cone effect (Barkana & Loeb 2006; Mondal et al. 2018), as
detailed in our previous paper (Mondal & Barkana 2023) [Note that
the Alcock-Paczyński effect (Alcock & Paczynski 1979; Ali et al.
2005; Nusser 2005; Barkana 2006) is not relevant since we do not
vary the cosmological parameters in this paper]. The 21-cm power
spectrum from the dark ages for the standard cosmological model
is shown in comparison with other cases later in this paper (e.g.,
the dashed lines in Figs. 8 and 9). The power increases initially as
the adiabatic expansion cools the gas faster than the CMB, and den-
sity fluctuations grow due to gravity. However, eventually the power
decreases as the declining density reduces Gc. For example, the maxi-
mum squared fluctuation�2 at : = 0.1 Mpc�1 is 0.44 mK2 at I = 51.
Measuring the dark ages power spectrum is substantially more dif-
ficult than measuring the global signal, but it contains potentially
much more information (Loeb & Zaldarriaga 2004). As we have re-
cently shown (Mondal & Barkana 2023), for standard cosmology the
global signal offers a relatively accessible first step to observing the
dark ages, with the power spectrum requiring a much greater invest-
ment to get started, but offering far greater potential returns. More
specifically, a single lunar global antenna can make a novel test of
the standard cosmological model, showing whether it can describe
the dark ages or if instead there is some surprise in cosmic history.
An array of antennas (either global antennas for increased integra-
tion time, or an interferometric array) can yield some cosmological
parameters (the overall baryon density and the Helium fraction) at
an accuracy competitive with Planck, and a very large interferometer
can outperform Planck on these parameters as well as the total mass
of neutrinos.
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from

Gc
1 + Gc

✓
1 �

)W

)g

◆

to
Gc)W/)R

1 + Gc)W/)R

✓
1 � )R
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 10. The significance (# of f) of the detection (i.e., 1/XV) as a function
of �r, for 21-cm power spectrum measurements. We show two detection
scenarios: distinguishing the ERB global signal from the standard case (solid
lines), and detecting it relative to zero signal (dashed lines).

Table 5. The significance (# of f) of detecting the ERB 21-cm power spec-
trum relative to zero signal or the standard signal.

Configuration
Relative to �r G A B C D

0.001 3.03 6.76 67.1 82.2 695
0.01 3.23 7.20 71.6 87.8 747

Zero 0.1 4.76 10.7 106 132 1153
0.4 6.73 15.1 150 188 1661
375 8.73 19.6 195 244 2156

0.001 0.0267 0.0606 0.605 0.769 7.10
0.01 0.266 0.604 6.02 7.67 70.9

Standard 0.1 1.98 4.50 44.8 57.3 530
0.4 3.98 9.01 89.8 114 1047
375 5.94 13.4 134 169 1532

statistically than the detection of the standard case itself (3.01f in
the same configuration). In the A configuration, the significance of
the two types is nearly as good as the 10,000 hour global case, while
the B and C configurations exceed the 100,000 hour global case (and
D is much better still). Note that configuration C somewhat outper-
forms B, due to its higher angular resolution. These comparisons
between the statistical strengths of the global signal and power spec-
trum for the ERB model are generally similar to the comparison for
the standard cosmological model (Table 1).

For distinguishing the ERB model from the standard case, Table 6
lists the minimum �r values for various levels of significance, for the
various observational configurations. For example, configuration G
can detect a minimum value of �r = 1.06 at 5f, and the detection
threshold can be improved by an order of magnitude in each step
of going to A, to B or C, and then to D, which can go down to
�r = 0.000708. Generally, the global signal is relatively more sensi-
tive to low values of �r (relative to high �r) compared to the power
spectrum. This is likely due to the different redshift dependence.
Since the thermal noise for the power spectrum measurement goes as
the square of system temperature )2

sys, it increases much faster with
redshift than the signal, unlike the global signal case. Therefore, the
power spectrum mostly measures lower I, while the global signal can
take advantage of higher redshifts, where the ERB signal depends
most strongly on the amplitude �r. Of course, the global and fluctu-

Table 6. The minimum value of �r (in units of 10�2) that allows the ERB
21-cm power spectrum to be distinguished from the standard (�r = 0) case,
at various levels of statistical significance.

Detection limit
Configuration 1f 2f 3f 5f

G 4.19 10.5 21.3 106
A 1.69 3.60 5.92 12.1

�r [10�2 ] B 0.164 0.328 0.493 0.829
C 0.130 0.258 0.387 0.648
D 0.0153 0.0292 0.0431 0.0708

Table 7. The mDM models that we use to illustrate our results, in terms of
the model parameters 5X (millicharged fraction of the DM), n (millicharged
electric charge) and <X (millicharged particle mass).

Model
A B C D E

5X 0.004 0.004 0.004 0.001 0.001
n [10�4 e] 1.0 0.1 0.1 0.3 0.1
<X [MeV] 10 3 1 5 1

ation measurements are observationally independent, so ideal would
be to have both measurements provide a useful cross-check.

4 THE MILLICHARGED DARK MATTER MODEL

As noted in the introduction, one way of explaining the tentative
EDGES absorption feature is by reducing the baryon temperature
through baryon-DM scattering (Barkana 2018). Any particle physics
model that supplies such a new scattering interaction faces addi-
tional constraints, such as baryon self-interaction, i.e., a fifth force
(Berlin et al. 2018; Barkana et al. 2018). A model that satisfies these
constraints is millicharged dark matter (mDM), in which a small
fraction of the dark matter particles have a tiny electric charge, and
Coulomb scattering is responsible for the energy transfer (Muñoz &
Loeb 2018). A strong correlation between baryon temperature and
the baryon-DM relative streaming velocity tends to imprint large
acoustic oscillations on the 21-cm signal (Barkana 2018), but this
signature is erased by drag at early times throughout the mDM pa-
rameter space that remains consistent with observational constraints,
particularly from the CMB (Kovetz et al. 2018). It is possible to re-
store this signature in an interacting millicharged dark matter model
(Liu et al. 2019; Barkana et al. 2022), which is more elaborate (adding
a long-range interaction between the millicharged part and the rest
of the DM) but also viable over a much wider range of parameters.

Here we consider the dark ages global 21-cm signal from the
simpler, non-interacting mDM model. The parameters of this model
are the fraction of the DM mass density that is millicharged ( 5X),
the electric charge of the millicharged particles (n , a fraction of the
electron charge 4), and the mass of the millicharged particles (<X).
We consider five different models with parameter values (see Table 7)
that roughly span the range that is allowed by current constraints and
that can explain the EDGES result (Kovetz et al. 2018).

Fig. 11 shows the size of the global 21-cm signal from the dark
ages as a function of a (and I), for the mDM models considered in
this this work. We also show the standard case for comparison, and
the instrumental noise for integration time Cint =1,000 hrs. Unlike the
ERB model, the mDM models have a shape versus frequency that
is generally similar to that of the standard model, except that the
variation with redshift is stronger. In the mDM model, the colder gas
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from

Gc
1 + Gc

✓
1 �
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)g

◆

to
Gc)W/)R

1 + Gc)W/)R

✓
1 � )R

)g

◆
.

Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from
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Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of
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consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 1. The evolution of the CMB temperature )W and gas temperature )g
and the spin temperature )s (in K unit), as a function of a (or I as the top
G-axis). The total radio background temperature )R for the ERB model with
�r = 0.4 is also shown, along with the corresponding )s.

where )W = 2.725 K (1 + I). Assuming that the optical depth of the
21-cm transition g21 ⌧ 1, this can be simplified to:
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where dHI is the neutral hydrogen density, d̄H is the cosmic mean
density of hydrogen, and Gc is the collisional coupling coefficient.
In Fig. 1 we show the evolution of )W and )g (cyan-blue and light-
orange lines, respectively) as a function of a (and I). Note that )W
falls as 1/a (or [1 + I]), while )g falls faster, eventually (at the lower
redshifts) as 1/a2 (or [1 + I]2).

During the dark ages, the spin temperature of the hydrogen atoms
is pulled towards the temperature of the gas ()s �! )g) by atomic
collisions, while it is pulled towards the temperature of the CMB
()s �! )W) by CMB scattering. The relative importance of these two
effects depends on the density of the gas. Fig. 2 shows the evolution
of Gc as a function of a (or I). The value of Gc is a measure of the
efficiency with which collisions between hydrogen atoms can couple
the spin states of the H � atoms into equilibrium with the regular
(kinetic) gas temperature. The coupling is strong (and so )s ⇡ )g)
roughly until the value Gc = 1 is reached at I = 72.4, after which )s
(which is shown in Fig. 1) begins to approach the CMB temperature.

The sky-averaged 21-cm brightness temperature, as a function of a
(or I), is referred to the 21-cm global (or mean) signal. Experiments
measuring the global signal require a single, well-calibrated antenna.
Therefore, they are relatively simple and advantageous to consider as
the first step toward detecting the dark ages signal. For the standard
set of cosmological parameters, we use the CAMB9 (Lewis & Challinor
2007; Lewis & Bridle 2002) cosmological perturbation code to pre-
cisely generate the 21-cm global signal10. The 21-cm global signal
during the dark ages is always negative (corresponding to absorption
relative to the CMB). The 21-cm global signal from the dark ages in

9 http://camb.info
10 To extract the 21-cm global signal from CAMB, we run CAMB twice, once
with temperature units on and once with temperature units off, and take the
ratio of the transfer functions in the two cases.

Figure 2. The evolution of the collisional coupling coefficient Gc as a function
of a (or I as the top G-axis). This also shows Gc)W/)R, which gives the
effective coupling in the case with )R for �r = 0.4.

the standard cosmological model is shown in comparison with other
cases later in this paper (e.g., the black dashed line in Fig. 3). The
peak of the signal is 40.2 mK at a = 16.3 MHz (I = 86).

In addition, the dark ages can be probed by measuring the fluc-
tuations in the 21-cm signal at various length scales, i.e., the power
spectrum. These fluctuations are mainly due to the fluctuations in
the gas density, temperature, and Gc. To accurately predict the 21-
cm power spectrum, we use CAMB (which includes small additional
effects (Lewis & Challinor 2007; Ali-Haïmoud et al. 2014) not in-
cluded in eq. (2)) and add to it redshift space distortions caused
by the line-of-sight component of the peculiar velocity of the gas
(Kaiser 1987; Bharadwaj & Ali 2004; Barkana & Loeb 2005c) and
the light-cone effect (Barkana & Loeb 2006; Mondal et al. 2018), as
detailed in our previous paper (Mondal & Barkana 2023) [Note that
the Alcock-Paczyński effect (Alcock & Paczynski 1979; Ali et al.
2005; Nusser 2005; Barkana 2006) is not relevant since we do not
vary the cosmological parameters in this paper]. The 21-cm power
spectrum from the dark ages for the standard cosmological model
is shown in comparison with other cases later in this paper (e.g.,
the dashed lines in Figs. 8 and 9). The power increases initially as
the adiabatic expansion cools the gas faster than the CMB, and den-
sity fluctuations grow due to gravity. However, eventually the power
decreases as the declining density reduces Gc. For example, the maxi-
mum squared fluctuation�2 at : = 0.1 Mpc�1 is 0.44 mK2 at I = 51.
Measuring the dark ages power spectrum is substantially more dif-
ficult than measuring the global signal, but it contains potentially
much more information (Loeb & Zaldarriaga 2004). As we have re-
cently shown (Mondal & Barkana 2023), for standard cosmology the
global signal offers a relatively accessible first step to observing the
dark ages, with the power spectrum requiring a much greater invest-
ment to get started, but offering far greater potential returns. More
specifically, a single lunar global antenna can make a novel test of
the standard cosmological model, showing whether it can describe
the dark ages or if instead there is some surprise in cosmic history.
An array of antennas (either global antennas for increased integra-
tion time, or an interferometric array) can yield some cosmological
parameters (the overall baryon density and the Helium fraction) at
an accuracy competitive with Planck, and a very large interferometer
can outperform Planck on these parameters as well as the total mass
of neutrinos.
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3 THE EXCESS RADIO BACKGROUND MODEL

3.1 Global signal

To calculate the global signal for the excess radio background (ERB)
model, we use eq. (2) together with the value of )b from CAMB, in
order to extract G2 (which we show in Fig. 2; note that this calculation
neglects the residual ionized fraction and other tiny effects). Now, in
the presence of a radio background, we change the final factors in
eq. (2) from

Gc
1 + Gc

✓
1 �

)W

)g

◆

to
Gc)W/)R

1 + Gc)W/)R

✓
1 � )R

)g

◆
.

Here, Gc is the same value as before, i.e., we use it to denote the value
in the absence of the ERB; note that this differs from the notation
used in some previous papers. The effective coupling constant in the
ERB case is Gc)W/)R (which is usually simply denoted Gc in the ERB
case). We use this notation in order to show simply and clearly how
the ERB changes the 21-cm signal (as opposed to the usual notation
which hides part of the effect within the change in Gc).

The total radio background at 21 cm at redshift I (including the
CMB plus the ERB) is assumed to be (as in Fialkov & Barkana
2019a):

)R = )W

h
1 + �r

⇣
aobs

78 MHz

⌘Ui
, (3)

where aobs = 1420 MHz/(1+I). Here the amplitude �r of the ERB is
measured relative to the CMB at an observed frequency of 78 MHz,
approximately the center of the tentative EDGES absorption feature.
We assume U = �2.6 to match the spectrum of the extragalactic ra-
dio background. Fialkov & Barkana (2019a) showed that a minimum
value of �r = 1.9 is required in order to match the EDGES feature,
when combined with models covering a wide range of possible astro-
physical parameters. The level of the extragalactic radio background
(its 2f upper limit) gives an upper limit of 375 on the possible value
of �r.

Fig. 3 shows the size of the global 21-cm signal from the dark ages
as a function of a (and I), for the excess radio background model
with various values of �r = [0.001, 0.01, 0.1, 0.4, 375]. Also shown
is the standard case which corresponds to �r = 0, i.e., CMB-only
and no ERB. The absorption signal increases sharply with I for the
ERB models (hence the H-axis is logarithmic, which is unusual for
plots of the global signal). The signal also increases with �r, but even
�r = 0.1 nearly saturates the dark ages signal, i.e., the signal becomes
independent of �r only slightly beyond that value. In Fig. 3, we also
show the instrumental noise for integration time Cint = 1,000 hrs. As
expected, the noise also increases sharply with redshift. Indeed, the
redshift dependence of the thermal noise and of the saturated radio
signal are similar since both follow the synchrotron spectrum of the
observed radio foreground.

We now label as the saturated ERB signal the case with the maxi-
mum �r = 375, and refer to the 21-cm brightness temperature in this
case )

sat
b . We then examine the approach to saturation by showing

the fractional difference [1�)b (�r)/) sat
b ], which is always positive,

as a function of a. Fig. 4 shows this for �r = 0, 0.001, 0.01, 0.1, 0.4,
and 1. We find that the maximum value of the fractional difference
is 0.1 for �r = 0.4, so that this is the value that gives at least 90%
saturation throughout the dark ages. Thus, it is a minimum �r value
for being near saturation, which we label �r90.

Figure 3. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model (black dashed line) and the excess radio model (solid
lines) with �r = 0.001, 0.01, 0.1, 0.4 and 375. We also show the expected
thermal noise for a global signal experiment observing for integration time
1,000 hrs (grey dotted line).

Figure 4. The fractional difference [1 � )b (�r )/)sat
b ] as a function of a for

�r = 0, 0.001, 0.01, 0.1, 0.4 and 1. Here )sat
b is the global signal for the case

�r = 375, and the case �r = 0.4 corresponds to �r90 (at least 90% saturation
throughout the dark ages).

Before continuing, we use the �r = 0.4 case to illustrate how the
ERB affects the 21-cm signal. Fig. 1 shows )s for this ERB case,
and Fig. 2 shows the effective collisional coupling coefficient in the
same case. On the one hand, )R in this ERB case is higher than
)W , with a relative factor that rises rapidly towards high redshift.
On the other hand, the effective coupling is suppressed by the high
radio background, which makes it actually decrease with redshift at
the high end. As a result, the effective coupling coefficient never
even reaches as high as 0.1. The balance between the high radio
background and the low effective coupling keeps )s from coming too
close to )R at high redshifts, and leads to a saturated signal (in the
limit of)R ! 1, or more specifically)R � Gc)W and also)R � )g)
with a value of

)
sat
b = �54.0 mK

✓
⌦b⌘

2

0.02242

◆ ✓
⌦m⌘

2

0.1424

◆� 1
2
✓
1 + I

40

◆ 1
2
Gc
)W

)g
, (4)

consistent with the dark ages section in Fialkov & Barkana (2019a).
When we consider the ability of lunar or space-based global exper-

iments to measure the dark ages signal, we account for foreground
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Figure 11. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model and the mDM models (Table 7) considered in this
work. We also show the expected thermal noise for a global signal experiment
observing for integration time 1,000 hrs (grey dotted line).

Table 8. The significance (# of f) of detecting the global signal in the mDM
models, relative to zero signal or the standard signal.

Integration time
Model 1,000 hrs 10,000 hrs 100,000 hrs

A 4.90 15.5 49.0
B 5.79 18.3 57.9

Relative to zero C 7.16 22.6 71.6
D 4.68 14.8 46.8
E 5.98 18.9 59.8
A 3.55 11.2 35.5
B 5.45 17.2 54.5

Relative to standard C 9.26 29.3 92.6
D 2.22 7.01 22.2
E 6.07 19.2 60.7

servations spanning the redshift range 30 � 200 with bins of �a = 1.
Table 8 lists the results. While the global signal in the mDM models
varies faster with frequency than the standard signal, this also brings
the mDM models closer at high redshifts to the slope of the thermal
noise. As a result, the order in terms of which type of detection is
easier, varies among the models. Overall, with Cint = 1,000 hrs the
mDM models can be detected at 4.68 � 7.16f (all higher than the
4.12f for detecting the standard model), and can be distinguished
from the standard model at 2.22 � 9.26f.

5 DISCUSSION AND CONCLUSIONS

The redshifted 21-cm signal from the dark ages is a powerful cosmo-
logical probe with the potential to constrain cosmology. This has been
previously shown under the assumption of the standard cosmology.
However, there are various studies on non-standard possibilities dur-
ing the dark ages, which suggest that exotic models could be easier to
detect than the standard case. In this paper, we have studied two non-
standard models that are consistent with current constraints and that
correspond to exotic dark matter properties that go beyond the cold
dark matter model: the excess radio background (ERB) model and
the millicharged dark matter (mDM) model. We have investigated the
effects of these two non-standard models on the redshifted 21-cm sig-
nal from dark ages. Both of these models have been mainly motivated
by the tentative EDGES detection, but more generally they provide

a useful range of possibilities for anticipating potential discoveries
once the window of the dark ages is opened up observationally.

First, we quantified the effects of an ERB on the redshifted 21-
cm global signal from the dark ages. We found that the ERB can
substantially increase the amplitude of the global signal, depending
on the parameter �r (defined as the I = 0 intensity of the ERB
relative to the CMB at 78 MHz). We found that the signal becomes
saturated (independent of �r) at high �r, with 90% saturation (during
the dark ages) reached at �r = 0.4; this corresponds to 21% of the
minimum value (�r = 1.9) required to explain EDGES, and 0.11%
of the value that would explain the entire observed extragalactic radio
background.

Using Fisher analysis, we forecast the detection significance of
the ERB signal. For 1,000 hrs of integration of the global signal,
the 90% saturation case can be detected at 5.89f significance, and
it can be distinguished from the standard signal at 8.45f; these
are substantially stronger results than the detection of the standard
signal itself (4.12f in this case), due to the greater amplitude of
the ERB signal, and accounting (optimistically) for degeneracy with
the foreground. A much smaller value of �r can be distinguished
from the standard signal at 5f: �r = 0.0389, which is only 2.0% of
the minimum value for explaining EDGES, and just 0.010% of the
extragalactic radio background. All these results get much stronger
if the integration time is increased significantly beyond 1,000 hrs,
so that the number of f is an order of magnitude larger for Cint =
100,000 hrs, which is feasible to achieve with an array of global
antennas; with this larger integration time, the amplitude that can be
distinguished from the standard signal at 5f is �r = 0.00175, which
is 9.2 ⇥ 10�4 of the minimum value for EDGES, and 4.7 ⇥ 10�6 of
the extragalactic radio background.

We also studied the 21-cm power spectrum in the ERB model. As
in the case of the standard model, compared to the global signal it
would take a much larger effort to reach significant results for the
ERB model with 21-cm fluctuations from the dark ages, but in the
long-run, much better results are possible. Similarly to the global sig-
nal, the 21-cm power spectrum rises with �r and becomes saturated
at �r & 0.4. Here, though, the thermal noise rises with redshift as
the square of system temperature, which is significantly faster than
the signal, while the rates are similar for the global signal, allowing
the latter to benefit more from the highest redshifts. For our mini-
mal G configuration of a dark ages interferometric array, the 90%
saturation case can be detected at 6.73f significance, and it can be
distinguished from the standard signal at 3.98f; these are again sub-
stantially stronger results than the detection of the standard signal
itself (3.01f in this case). The value of �r that can be distinguished
from the standard signal at 5f is �r = 1.06, as the power spectrum is
less sensitive to low values of �r compared to the global signal (due
to the different redshift behavior). This constraint for the B and C
configurations would be comparable to that for a 10,000 hr global ex-
periment, and the D configuration would go down to �r = 0.000708,
lower by a factor of 2.47 than the value achievable with a 100,000 hr
global experiment. The power spectrum is much less effective on
this measure compared to the significance of detection (of either the
standard signal or the 90% saturated ERB model relative to zero sig-
nal or the standard signal); for the latter, the B and C configurations
perform better than 100,000 hr global, and D gives a further order
of magnitude improvement in the number of f. Of course, it would
be best to pursue both global and power spectrum measurements, as
they would be observationally independent and thus provides com-
plementary information and a powerful cross-check.

Finally, we investigated the global signal of the redshifted 21-
cm line from the dark ages in the model of gas-DM cooling with
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Figure 11. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model and the mDM models (Table 7) considered in this
work. We also show the expected thermal noise for a global signal experiment
observing for integration time 1,000 hrs (grey dotted line).

Table 8. The significance (# of f) of detecting the global signal in the mDM
models, relative to zero signal or the standard signal.

Integration time
Model 1,000 hrs 10,000 hrs 100,000 hrs

A 4.90 15.5 49.0
B 5.79 18.3 57.9

Relative to zero C 7.16 22.6 71.6
D 4.68 14.8 46.8
E 5.98 18.9 59.8
A 3.55 11.2 35.5
B 5.45 17.2 54.5

Relative to standard C 9.26 29.3 92.6
D 2.22 7.01 22.2
E 6.07 19.2 60.7

servations spanning the redshift range 30 � 200 with bins of �a = 1.
Table 8 lists the results. While the global signal in the mDM models
varies faster with frequency than the standard signal, this also brings
the mDM models closer at high redshifts to the slope of the thermal
noise. As a result, the order in terms of which type of detection is
easier, varies among the models. Overall, with Cint = 1,000 hrs the
mDM models can be detected at 4.68 � 7.16f (all higher than the
4.12f for detecting the standard model), and can be distinguished
from the standard model at 2.22 � 9.26f.

5 DISCUSSION AND CONCLUSIONS

The redshifted 21-cm signal from the dark ages is a powerful cosmo-
logical probe with the potential to constrain cosmology. This has been
previously shown under the assumption of the standard cosmology.
However, there are various studies on non-standard possibilities dur-
ing the dark ages, which suggest that exotic models could be easier to
detect than the standard case. In this paper, we have studied two non-
standard models that are consistent with current constraints and that
correspond to exotic dark matter properties that go beyond the cold
dark matter model: the excess radio background (ERB) model and
the millicharged dark matter (mDM) model. We have investigated the
effects of these two non-standard models on the redshifted 21-cm sig-
nal from dark ages. Both of these models have been mainly motivated
by the tentative EDGES detection, but more generally they provide

a useful range of possibilities for anticipating potential discoveries
once the window of the dark ages is opened up observationally.

First, we quantified the effects of an ERB on the redshifted 21-
cm global signal from the dark ages. We found that the ERB can
substantially increase the amplitude of the global signal, depending
on the parameter �r (defined as the I = 0 intensity of the ERB
relative to the CMB at 78 MHz). We found that the signal becomes
saturated (independent of �r) at high �r, with 90% saturation (during
the dark ages) reached at �r = 0.4; this corresponds to 21% of the
minimum value (�r = 1.9) required to explain EDGES, and 0.11%
of the value that would explain the entire observed extragalactic radio
background.

Using Fisher analysis, we forecast the detection significance of
the ERB signal. For 1,000 hrs of integration of the global signal,
the 90% saturation case can be detected at 5.89f significance, and
it can be distinguished from the standard signal at 8.45f; these
are substantially stronger results than the detection of the standard
signal itself (4.12f in this case), due to the greater amplitude of
the ERB signal, and accounting (optimistically) for degeneracy with
the foreground. A much smaller value of �r can be distinguished
from the standard signal at 5f: �r = 0.0389, which is only 2.0% of
the minimum value for explaining EDGES, and just 0.010% of the
extragalactic radio background. All these results get much stronger
if the integration time is increased significantly beyond 1,000 hrs,
so that the number of f is an order of magnitude larger for Cint =
100,000 hrs, which is feasible to achieve with an array of global
antennas; with this larger integration time, the amplitude that can be
distinguished from the standard signal at 5f is �r = 0.00175, which
is 9.2 ⇥ 10�4 of the minimum value for EDGES, and 4.7 ⇥ 10�6 of
the extragalactic radio background.

We also studied the 21-cm power spectrum in the ERB model. As
in the case of the standard model, compared to the global signal it
would take a much larger effort to reach significant results for the
ERB model with 21-cm fluctuations from the dark ages, but in the
long-run, much better results are possible. Similarly to the global sig-
nal, the 21-cm power spectrum rises with �r and becomes saturated
at �r & 0.4. Here, though, the thermal noise rises with redshift as
the square of system temperature, which is significantly faster than
the signal, while the rates are similar for the global signal, allowing
the latter to benefit more from the highest redshifts. For our mini-
mal G configuration of a dark ages interferometric array, the 90%
saturation case can be detected at 6.73f significance, and it can be
distinguished from the standard signal at 3.98f; these are again sub-
stantially stronger results than the detection of the standard signal
itself (3.01f in this case). The value of �r that can be distinguished
from the standard signal at 5f is �r = 1.06, as the power spectrum is
less sensitive to low values of �r compared to the global signal (due
to the different redshift behavior). This constraint for the B and C
configurations would be comparable to that for a 10,000 hr global ex-
periment, and the D configuration would go down to �r = 0.000708,
lower by a factor of 2.47 than the value achievable with a 100,000 hr
global experiment. The power spectrum is much less effective on
this measure compared to the significance of detection (of either the
standard signal or the 90% saturated ERB model relative to zero sig-
nal or the standard signal); for the latter, the B and C configurations
perform better than 100,000 hr global, and D gives a further order
of magnitude improvement in the number of f. Of course, it would
be best to pursue both global and power spectrum measurements, as
they would be observationally independent and thus provides com-
plementary information and a powerful cross-check.

Finally, we investigated the global signal of the redshifted 21-
cm line from the dark ages in the model of gas-DM cooling with
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Figure 11. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model and the mDM models (Table 7) considered in this
work. We also show the expected thermal noise for a global signal experiment
observing for integration time 1,000 hrs (grey dotted line).

Table 8. The significance (# of f) of detecting the global signal in the mDM
models, relative to zero signal or the standard signal.

Integration time
Model 1,000 hrs 10,000 hrs 100,000 hrs

A 4.90 15.5 49.0
B 5.79 18.3 57.9

Relative to zero C 7.16 22.6 71.6
D 4.68 14.8 46.8
E 5.98 18.9 59.8
A 3.55 11.2 35.5
B 5.45 17.2 54.5

Relative to standard C 9.26 29.3 92.6
D 2.22 7.01 22.2
E 6.07 19.2 60.7

servations spanning the redshift range 30 � 200 with bins of �a = 1.
Table 8 lists the results. While the global signal in the mDM models
varies faster with frequency than the standard signal, this also brings
the mDM models closer at high redshifts to the slope of the thermal
noise. As a result, the order in terms of which type of detection is
easier, varies among the models. Overall, with Cint = 1,000 hrs the
mDM models can be detected at 4.68 � 7.16f (all higher than the
4.12f for detecting the standard model), and can be distinguished
from the standard model at 2.22 � 9.26f.

5 DISCUSSION AND CONCLUSIONS

The redshifted 21-cm signal from the dark ages is a powerful cosmo-
logical probe with the potential to constrain cosmology. This has been
previously shown under the assumption of the standard cosmology.
However, there are various studies on non-standard possibilities dur-
ing the dark ages, which suggest that exotic models could be easier to
detect than the standard case. In this paper, we have studied two non-
standard models that are consistent with current constraints and that
correspond to exotic dark matter properties that go beyond the cold
dark matter model: the excess radio background (ERB) model and
the millicharged dark matter (mDM) model. We have investigated the
effects of these two non-standard models on the redshifted 21-cm sig-
nal from dark ages. Both of these models have been mainly motivated
by the tentative EDGES detection, but more generally they provide

a useful range of possibilities for anticipating potential discoveries
once the window of the dark ages is opened up observationally.

First, we quantified the effects of an ERB on the redshifted 21-
cm global signal from the dark ages. We found that the ERB can
substantially increase the amplitude of the global signal, depending
on the parameter �r (defined as the I = 0 intensity of the ERB
relative to the CMB at 78 MHz). We found that the signal becomes
saturated (independent of �r) at high �r, with 90% saturation (during
the dark ages) reached at �r = 0.4; this corresponds to 21% of the
minimum value (�r = 1.9) required to explain EDGES, and 0.11%
of the value that would explain the entire observed extragalactic radio
background.

Using Fisher analysis, we forecast the detection significance of
the ERB signal. For 1,000 hrs of integration of the global signal,
the 90% saturation case can be detected at 5.89f significance, and
it can be distinguished from the standard signal at 8.45f; these
are substantially stronger results than the detection of the standard
signal itself (4.12f in this case), due to the greater amplitude of
the ERB signal, and accounting (optimistically) for degeneracy with
the foreground. A much smaller value of �r can be distinguished
from the standard signal at 5f: �r = 0.0389, which is only 2.0% of
the minimum value for explaining EDGES, and just 0.010% of the
extragalactic radio background. All these results get much stronger
if the integration time is increased significantly beyond 1,000 hrs,
so that the number of f is an order of magnitude larger for Cint =
100,000 hrs, which is feasible to achieve with an array of global
antennas; with this larger integration time, the amplitude that can be
distinguished from the standard signal at 5f is �r = 0.00175, which
is 9.2 ⇥ 10�4 of the minimum value for EDGES, and 4.7 ⇥ 10�6 of
the extragalactic radio background.

We also studied the 21-cm power spectrum in the ERB model. As
in the case of the standard model, compared to the global signal it
would take a much larger effort to reach significant results for the
ERB model with 21-cm fluctuations from the dark ages, but in the
long-run, much better results are possible. Similarly to the global sig-
nal, the 21-cm power spectrum rises with �r and becomes saturated
at �r & 0.4. Here, though, the thermal noise rises with redshift as
the square of system temperature, which is significantly faster than
the signal, while the rates are similar for the global signal, allowing
the latter to benefit more from the highest redshifts. For our mini-
mal G configuration of a dark ages interferometric array, the 90%
saturation case can be detected at 6.73f significance, and it can be
distinguished from the standard signal at 3.98f; these are again sub-
stantially stronger results than the detection of the standard signal
itself (3.01f in this case). The value of �r that can be distinguished
from the standard signal at 5f is �r = 1.06, as the power spectrum is
less sensitive to low values of �r compared to the global signal (due
to the different redshift behavior). This constraint for the B and C
configurations would be comparable to that for a 10,000 hr global ex-
periment, and the D configuration would go down to �r = 0.000708,
lower by a factor of 2.47 than the value achievable with a 100,000 hr
global experiment. The power spectrum is much less effective on
this measure compared to the significance of detection (of either the
standard signal or the 90% saturated ERB model relative to zero sig-
nal or the standard signal); for the latter, the B and C configurations
perform better than 100,000 hr global, and D gives a further order
of magnitude improvement in the number of f. Of course, it would
be best to pursue both global and power spectrum measurements, as
they would be observationally independent and thus provides com-
plementary information and a powerful cross-check.

Finally, we investigated the global signal of the redshifted 21-
cm line from the dark ages in the model of gas-DM cooling with

MNRAS 000, 1–10 (2023)

Exotic models with the dark ages 21-cm signal 9

Figure 11. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model and the mDM models (Table 7) considered in this
work. We also show the expected thermal noise for a global signal experiment
observing for integration time 1,000 hrs (grey dotted line).

Table 8. The significance (# of f) of detecting the global signal in the mDM
models, relative to zero signal or the standard signal.

Integration time
Model 1,000 hrs 10,000 hrs 100,000 hrs

A 4.90 15.5 49.0
B 5.79 18.3 57.9

Relative to zero C 7.16 22.6 71.6
D 4.68 14.8 46.8
E 5.98 18.9 59.8
A 3.55 11.2 35.5
B 5.45 17.2 54.5

Relative to standard C 9.26 29.3 92.6
D 2.22 7.01 22.2
E 6.07 19.2 60.7

servations spanning the redshift range 30 � 200 with bins of �a = 1.
Table 8 lists the results. While the global signal in the mDM models
varies faster with frequency than the standard signal, this also brings
the mDM models closer at high redshifts to the slope of the thermal
noise. As a result, the order in terms of which type of detection is
easier, varies among the models. Overall, with Cint = 1,000 hrs the
mDM models can be detected at 4.68 � 7.16f (all higher than the
4.12f for detecting the standard model), and can be distinguished
from the standard model at 2.22 � 9.26f.

5 DISCUSSION AND CONCLUSIONS

The redshifted 21-cm signal from the dark ages is a powerful cosmo-
logical probe with the potential to constrain cosmology. This has been
previously shown under the assumption of the standard cosmology.
However, there are various studies on non-standard possibilities dur-
ing the dark ages, which suggest that exotic models could be easier to
detect than the standard case. In this paper, we have studied two non-
standard models that are consistent with current constraints and that
correspond to exotic dark matter properties that go beyond the cold
dark matter model: the excess radio background (ERB) model and
the millicharged dark matter (mDM) model. We have investigated the
effects of these two non-standard models on the redshifted 21-cm sig-
nal from dark ages. Both of these models have been mainly motivated
by the tentative EDGES detection, but more generally they provide

a useful range of possibilities for anticipating potential discoveries
once the window of the dark ages is opened up observationally.

First, we quantified the effects of an ERB on the redshifted 21-
cm global signal from the dark ages. We found that the ERB can
substantially increase the amplitude of the global signal, depending
on the parameter �r (defined as the I = 0 intensity of the ERB
relative to the CMB at 78 MHz). We found that the signal becomes
saturated (independent of �r) at high �r, with 90% saturation (during
the dark ages) reached at �r = 0.4; this corresponds to 21% of the
minimum value (�r = 1.9) required to explain EDGES, and 0.11%
of the value that would explain the entire observed extragalactic radio
background.

Using Fisher analysis, we forecast the detection significance of
the ERB signal. For 1,000 hrs of integration of the global signal,
the 90% saturation case can be detected at 5.89f significance, and
it can be distinguished from the standard signal at 8.45f; these
are substantially stronger results than the detection of the standard
signal itself (4.12f in this case), due to the greater amplitude of
the ERB signal, and accounting (optimistically) for degeneracy with
the foreground. A much smaller value of �r can be distinguished
from the standard signal at 5f: �r = 0.0389, which is only 2.0% of
the minimum value for explaining EDGES, and just 0.010% of the
extragalactic radio background. All these results get much stronger
if the integration time is increased significantly beyond 1,000 hrs,
so that the number of f is an order of magnitude larger for Cint =
100,000 hrs, which is feasible to achieve with an array of global
antennas; with this larger integration time, the amplitude that can be
distinguished from the standard signal at 5f is �r = 0.00175, which
is 9.2 ⇥ 10�4 of the minimum value for EDGES, and 4.7 ⇥ 10�6 of
the extragalactic radio background.

We also studied the 21-cm power spectrum in the ERB model. As
in the case of the standard model, compared to the global signal it
would take a much larger effort to reach significant results for the
ERB model with 21-cm fluctuations from the dark ages, but in the
long-run, much better results are possible. Similarly to the global sig-
nal, the 21-cm power spectrum rises with �r and becomes saturated
at �r & 0.4. Here, though, the thermal noise rises with redshift as
the square of system temperature, which is significantly faster than
the signal, while the rates are similar for the global signal, allowing
the latter to benefit more from the highest redshifts. For our mini-
mal G configuration of a dark ages interferometric array, the 90%
saturation case can be detected at 6.73f significance, and it can be
distinguished from the standard signal at 3.98f; these are again sub-
stantially stronger results than the detection of the standard signal
itself (3.01f in this case). The value of �r that can be distinguished
from the standard signal at 5f is �r = 1.06, as the power spectrum is
less sensitive to low values of �r compared to the global signal (due
to the different redshift behavior). This constraint for the B and C
configurations would be comparable to that for a 10,000 hr global ex-
periment, and the D configuration would go down to �r = 0.000708,
lower by a factor of 2.47 than the value achievable with a 100,000 hr
global experiment. The power spectrum is much less effective on
this measure compared to the significance of detection (of either the
standard signal or the 90% saturated ERB model relative to zero sig-
nal or the standard signal); for the latter, the B and C configurations
perform better than 100,000 hr global, and D gives a further order
of magnitude improvement in the number of f. Of course, it would
be best to pursue both global and power spectrum measurements, as
they would be observationally independent and thus provides com-
plementary information and a powerful cross-check.

Finally, we investigated the global signal of the redshifted 21-
cm line from the dark ages in the model of gas-DM cooling with
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Figure 11. The size of the global 21-cm signal as a function of a for the
standard ⇤CDM model and the mDM models (Table 7) considered in this
work. We also show the expected thermal noise for a global signal experiment
observing for integration time 1,000 hrs (grey dotted line).

Table 8. The significance (# of f) of detecting the global signal in the mDM
models, relative to zero signal or the standard signal.

Integration time
Model 1,000 hrs 10,000 hrs 100,000 hrs

A 4.90 15.5 49.0
B 5.79 18.3 57.9

Relative to zero C 7.16 22.6 71.6
D 4.68 14.8 46.8
E 5.98 18.9 59.8
A 3.55 11.2 35.5
B 5.45 17.2 54.5

Relative to standard C 9.26 29.3 92.6
D 2.22 7.01 22.2
E 6.07 19.2 60.7

servations spanning the redshift range 30 � 200 with bins of �a = 1.
Table 8 lists the results. While the global signal in the mDM models
varies faster with frequency than the standard signal, this also brings
the mDM models closer at high redshifts to the slope of the thermal
noise. As a result, the order in terms of which type of detection is
easier, varies among the models. Overall, with Cint = 1,000 hrs the
mDM models can be detected at 4.68 � 7.16f (all higher than the
4.12f for detecting the standard model), and can be distinguished
from the standard model at 2.22 � 9.26f.

5 DISCUSSION AND CONCLUSIONS

The redshifted 21-cm signal from the dark ages is a powerful cosmo-
logical probe with the potential to constrain cosmology. This has been
previously shown under the assumption of the standard cosmology.
However, there are various studies on non-standard possibilities dur-
ing the dark ages, which suggest that exotic models could be easier to
detect than the standard case. In this paper, we have studied two non-
standard models that are consistent with current constraints and that
correspond to exotic dark matter properties that go beyond the cold
dark matter model: the excess radio background (ERB) model and
the millicharged dark matter (mDM) model. We have investigated the
effects of these two non-standard models on the redshifted 21-cm sig-
nal from dark ages. Both of these models have been mainly motivated
by the tentative EDGES detection, but more generally they provide

a useful range of possibilities for anticipating potential discoveries
once the window of the dark ages is opened up observationally.

First, we quantified the effects of an ERB on the redshifted 21-
cm global signal from the dark ages. We found that the ERB can
substantially increase the amplitude of the global signal, depending
on the parameter �r (defined as the I = 0 intensity of the ERB
relative to the CMB at 78 MHz). We found that the signal becomes
saturated (independent of �r) at high �r, with 90% saturation (during
the dark ages) reached at �r = 0.4; this corresponds to 21% of the
minimum value (�r = 1.9) required to explain EDGES, and 0.11%
of the value that would explain the entire observed extragalactic radio
background.

Using Fisher analysis, we forecast the detection significance of
the ERB signal. For 1,000 hrs of integration of the global signal,
the 90% saturation case can be detected at 5.89f significance, and
it can be distinguished from the standard signal at 8.45f; these
are substantially stronger results than the detection of the standard
signal itself (4.12f in this case), due to the greater amplitude of
the ERB signal, and accounting (optimistically) for degeneracy with
the foreground. A much smaller value of �r can be distinguished
from the standard signal at 5f: �r = 0.0389, which is only 2.0% of
the minimum value for explaining EDGES, and just 0.010% of the
extragalactic radio background. All these results get much stronger
if the integration time is increased significantly beyond 1,000 hrs,
so that the number of f is an order of magnitude larger for Cint =
100,000 hrs, which is feasible to achieve with an array of global
antennas; with this larger integration time, the amplitude that can be
distinguished from the standard signal at 5f is �r = 0.00175, which
is 9.2 ⇥ 10�4 of the minimum value for EDGES, and 4.7 ⇥ 10�6 of
the extragalactic radio background.

We also studied the 21-cm power spectrum in the ERB model. As
in the case of the standard model, compared to the global signal it
would take a much larger effort to reach significant results for the
ERB model with 21-cm fluctuations from the dark ages, but in the
long-run, much better results are possible. Similarly to the global sig-
nal, the 21-cm power spectrum rises with �r and becomes saturated
at �r & 0.4. Here, though, the thermal noise rises with redshift as
the square of system temperature, which is significantly faster than
the signal, while the rates are similar for the global signal, allowing
the latter to benefit more from the highest redshifts. For our mini-
mal G configuration of a dark ages interferometric array, the 90%
saturation case can be detected at 6.73f significance, and it can be
distinguished from the standard signal at 3.98f; these are again sub-
stantially stronger results than the detection of the standard signal
itself (3.01f in this case). The value of �r that can be distinguished
from the standard signal at 5f is �r = 1.06, as the power spectrum is
less sensitive to low values of �r compared to the global signal (due
to the different redshift behavior). This constraint for the B and C
configurations would be comparable to that for a 10,000 hr global ex-
periment, and the D configuration would go down to �r = 0.000708,
lower by a factor of 2.47 than the value achievable with a 100,000 hr
global experiment. The power spectrum is much less effective on
this measure compared to the significance of detection (of either the
standard signal or the 90% saturated ERB model relative to zero sig-
nal or the standard signal); for the latter, the B and C configurations
perform better than 100,000 hr global, and D gives a further order
of magnitude improvement in the number of f. Of course, it would
be best to pursue both global and power spectrum measurements, as
they would be observationally independent and thus provides com-
plementary information and a powerful cross-check.

Finally, we investigated the global signal of the redshifted 21-
cm line from the dark ages in the model of gas-DM cooling with
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Summary

• Early history of 21-cm Cosmology 

• Exotic models (inspired by EDGES)  
• (Interacting) millicharged DM 
• Excess radio background 

• Imaging cosmic dawn Ly  bubbles  

• Dark ages 
• Start with the global 21-cm signal (single, then array) 
• Future: 21-cm power spectrum
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