Constraining the X-ray heating and ionization of the IGM with SIMULATION-BASED INFERENCE

Collaborators: Alex Cole, Simon Gazagnes (University of Texas), P. Daniel Meerburg (University of Groningen), Christoph Weniger (GRAPPA, UvA), Samuel J. Witte (GRAPPA, UvA)

arXiv: 2303.07339

university of groningen

faculty of science and engineering

Anchal Saxena

September11, 2023 6th Global 21-cm Workshop

- CD and EoR host invaluable information about the cosmology and astrophysics of the early universe.
- Interferometric observations of the 21-cm line \rightarrow ulletParameter inference
- Modeling the evolution of these epochs is challenging.
- Difficult to perform statistical analysis using the conventional MCMC methods.

Handley et al. (2019)

Motivation

Greig et al. (2017)

A step towards evading these issues

• Likelihood free inference through deep learning

How to learn from data?

Solving the inverse problem

Inverse problem → Probability of a physical model given observed data

Sometimes the problem is intractable

 $p(\theta \,|\, x) = \frac{\int d^N \eta \, p(x \,|\, \theta, \eta) \, p(\eta, \theta)}{2}$ p(x)

Evaluating posteriors for parameters of interest commonly requires integrating over all parameters that are not of interest.

Simulation-Based Inference

Neural Ratio Estimation (NRE)

• Likelihood-to-evidence ratio:

$$r(x, \theta) = \frac{p(x \mid \theta)}{p(x)} =$$
$$= \frac{p(x, \theta)}{p(x, \theta)}$$

• Generate sample-parameter pairs from the simulator $\{(x^1, \theta^1), (x^2, \theta^2), \dots\}$

• Train a neural network to approximate this ratio

Implementation of NRE using swyft (https://github.com/undark-lab/swyft)

 $p(\theta | x)$ $p(\theta)$

Generative model for the 21-cm signal

Neural Ratio Estimator

Simulated Mock Observation

• We restrict our analysis to the k-modes in the range $k \in (0.1, 0.8)$ Mpc⁻¹.

Predictions

Recovered 1D and 2D marginal posteriors

	Inferred True	
ζ	$30.25^{+2.70}_{-1.80}$	30
$\log_{10}(T_{\rm vir}^{\rm min})$	$4.70^{+0.03}_{-0.02}$	4.70
<i>R</i> _{mfp}	$14.65^{+0.56}_{-0.56}$	15
$\log_{10}(L_{\rm X})$	$40.49^{+0.04}_{-0.06}$	40.5
E_0	$0.50^{+0.03}_{-0.03}$	0.50
$lpha_{ m X}$	$0.84^{+0.39}_{-0.39}$	1.0

 $\log_{10}(T_{\rm vir}^{\rm min})$ 20 $R_{
m mfp}$ 1510 $\log_{10}(L_{\rm X})$ 41400.8 E_{0} 0.2 -G,

Sensitivity of model parameters during EoH and EoR

- This analysis does not require any extra 21-cm power spectra simulations.
- Re-use the simulations with a minimal change in the network architecture

a 21-cm power spectra simulations. Change in the network architecture

Recovered posteriors from *z*EOH and *z*EOR

	$z_{\rm EoH}$	z _{EoR}	True
ζ	$22.15^{+5.40}_{-5.40}$	$29.35^{+2.70}_{-3.60}$	30
$\log_{10}(T_{\rm vir}^{\rm min})$	$4.70^{+0.03}_{-0.02}$	$4.66^{+0.04}_{-0.05}$	4.70
<i>R</i> _{mfp}		$14.65^{+0.56}_{-0.56}$	15
$\log_{10}(L_{\rm X})$	$40.49^{+0.06}_{-0.06}$	$40.47^{+0.12}_{-0.12}$	40.5
E_0	$0.49^{+0.03}_{-0.04}$	$0.32^{+0.07}_{-0.10}$	0.50
$lpha_{ m X}$	$0.68^{+0.51}_{-0.45}$		1.0

 $\log_{10}(T_{\rm vir}^{\rm min})$ 20 $R_{
m mfp}$ 1510 $\log_{10}(L_{\rm X})$ 41400.8 - $E_{0} = 0.5$ 0.2 - α_{λ} 0

- Performed the Simulation-Based Inference (SBI) through Marginal Neural Ratio Estimation.
- Constrain the astrophysical parameters which govern the heating and reionization of the IGM.
- Re-use the simulations and utilize the same training dataset for various applications: More efficient

Repository <u>https://github.com/anchal-oog/swyft_21cmPk</u>

Next steps

- Higher order information: 21-cm bispectrum
- Morphology of ionized regions
- CNN on the 21-cm tomographic images

Impact of including modeling uncertainty

Impact of size of the training data

Coverage of the trained network

