

SCUOLA NORMALE SUPERIORE

Emplating 21 cmFAST summary observables with 21 cmEMU

Daniela Breitman¹ Scuola Normale Superiore Supervised by Andrei Mesinger 6th Global 21cm Signal Conference, Trieste September 14, 2023

¹daniela.breitman@sns.it

UV Luminosity Functions

Hydrogen Neutral Fraction Upper Limit

MMT

McGreer+15

Thomson Scattering CMB Optical Depth

Planck Collaboration 2020, Qin+20

Why emulate? **Rapidly evolving data** ~ every few months **Speed - over 10⁴ faster** than direct simulation The observed data is **low dimensional** (i.e. summary statistics) Database to train an adequate emulator < one full inference

[Mesinger & Furlanetto 2007; Mesinger+11; Murray+20]

Ideal Emulator

See it here

Summary Statistics

- **xHI** (**z**): Global fraction of neutral hydrogen
- $T_s(z)$: Global neutral IGM spin temperature

$$T_{\rm S}^{-1} = \frac{T_{\gamma}^{-1} + x_{\alpha}T_{\alpha}^{-1} + x_{\rm c}T_{\rm K}^{-1}}{1 + x_{\alpha} + x_{\rm c}}$$

- $\mathbf{T}_{b}(\mathbf{z})$: Global 21-cm brightness temperature [e.g. Bye+22, Bevins+21, Cohen+19] $\delta T_{b} \approx 27 x_{H_{I}} (1 + \delta_{b}) \left(\frac{\Omega_{b}h^{2}}{0.023}\right) \left(\frac{0.15}{\Omega_{m}h^{2}}\frac{1+z}{10}\right)^{1/2} \times \left(\frac{T_{s} - T_{R}}{T_{s}}\right) \left[\frac{\partial_{r}v_{r}}{(1+z)H(z)}\right] \mathrm{mK}$
- **21-cm power spectrum** (**k**, **z**): e.g. Kern+17, Schmit & Pritchard 18, Ghara+20, Mondal+21
- UV luminosity function: Source number density per magnitude vs z [Bouwens+15, 16]
- τ_{e} : Thomson scattering optical depth of CMB photons

Power Spectrum

Power Spectrum

21cmEMU Performance

Summary	Median FE (%)	68% CL (%)
$\log \Delta_{21}^2$	0.55	2.4
\overline{T}_{b}	0.25	0.82
$\log \overline{T}_{S}$	0.032	0.13
$\overline{x}_{\rm HI}$	0.0073	0.10
$ au_{ m e}$	0.11	0.26
$\log \phi$	0.50	2.1

Breitman+ 2309.05697

Small errors, but do they impact the inference?

21cmEMU can reproduce 21cmFAST results.

Breitman+ 2309.05697

MultiNest Sampler vs UltraNest Sampler

MultiNest Sampler vs UltraNest Sampler

Difference between different samplers > difference between 21cmEMU and 21cmFAST

21cmEMU Application - HERA 6th Season Phase II Forecast

- HERA Phase II
 - \circ 50-230 MHz (omitting the FM band, 90-110 MHz),
 - expanding coverage to Cosmic Dawn and late reionization with respect to Phase I (in HERA22).
- Known characteristics of observation:
 - ~1300 hours of unflagged data over ~150 nights, with an average of ~148 un-flagged antennas per night
 - HERA's most sensitive data release to date

HERA22 (Phase I) vs HERA 6th Season (Phase II) Forecast

Likelihood Choice

- Two-sided Gaussian (*detection*) rather than an error function (*upper limit*)
- \Rightarrow **Optimistic likelihood** since it assumes no residual systematics in the mock data
- \Rightarrow (effectively) tighter prior on systematics

Forecast for HERA Phase II 6th-Season Observations

New HERA data + tighter prior on systematics significantly improve the constraints for almost all astrophysical parameters

Breitman+ 2309.05697

Conclusions

- Goal: Emulate summaries required for inference using 21cmFAST data
 - Emulate: **PS**, T_b , T_s , **xHI** + τ_e and **UV LF**
 - **FE 68% CL ≤ 2% for all quantities**
 - This error is **much smaller than expected instrument error**
 - Major improvement in runtime: **~ms vs ~hr per parameter combination ⇒ ~10k x faster**
- Application:
 - Inference with HERA 6th season somewhat optimistic forecast
 - **Upcoming HERA data dramatically improves our understanding of the EoR: e.g. at z ~ 8:**
 - Infer xHI to within ±0.05 (95% C.I.): factor of ≥ 7 better than current limits
 - Infer Δ^2_{21} to within $\pm 1.29 \text{ mK}^2$ (95% C.I.): factor of ≥ 11 better than current limits
- **Limitations: including new physics** e.g. minihalos will require re-running 21cmFAST + retraining

Now available!!

pip install py21cmemu

https://github.com/21cmfast/21cmemu

ArXiv 2309.05697

21 cm

