Andrea Caputo

21cm and the RJ tail of the CMB

Trieste, 14 September 2023

Cosmic Microwave Background Spectrum

Cosmic Microwave Background Spectrum

Brightness temperature $\Delta T_b^{21} \propto x_{HI} \left(1 - \frac{T_{\gamma}}{T_S} \right)$

Brightness temperature $\Delta T_b^{21} \propto x_{HI} \left(1 - \frac{T_{\gamma}}{T_S} \right)$

$T_S > T_{\gamma} \rightarrow \Delta T_b^{21} > 0$ (emission)

$T_S < T_{\gamma} \rightarrow \Delta T_b^{21} < 0$ (absorption)

Brightness temperature $\Delta T_b^{21} \propto x_{HI} \left(1 - \frac{T_{\gamma}}{T_{\varsigma}} \right)$ More absorption than we thought? **EDGES** measurement 0.0-0.2 $\Delta T_{\rm b} \, [{\rm K}]$ -0.4-0.6

20

-0.8

-1.0

15

Bowman et al, Nature (2018)

35

Typical absorption

EDGES (2018)

25

1 + z

Maximum absorption

30

$T_S > T_{\gamma} \rightarrow \Delta T_b^{21} > 0$ (emission)

$T_S < T_{\gamma} \rightarrow \Delta T_b^{21} < 0$ (absorption)

$T_S > T_{\gamma} \to \Delta T_b^{21} > 0$ (emission)

$T_S < T_{\gamma} \rightarrow \Delta T_b^{21} < 0$ (absorption)

One can cool baryons

Muñoz & Loeb [1802.10094] Falkowski & Petraki [1803.10096] Barkana [1803.06698] Barkana et al [1803.03091] Berlin et al [1803.02804] Liu et al [1908.06986]

$T_S > T_{\gamma} \rightarrow \Delta T_b^{21} > 0$ (emission)

$T_S < T_{\gamma} \rightarrow \Delta T_b^{21} < 0$ (absorption)

One can cool baryons

Muñoz & Loeb [1802.10094] Falkowski & Petraki [1803.10096] Barkana [1803.06698] Barkana et al [1803.03091] Berlin et al [1803.02804] Liu et al [1908.06986]

One can add photons!

Pospelov et al [1803.07048] Moroi, Nakayama, Tang [1804.10378] Choi, Seong, Yun [1911.00532]

 $n_{\gamma}^{\text{inj}} > n_{\text{CMB}} \ (\lambda = 21 cm)$

 $T_S > T_{\gamma} \to \Delta T_b^{21} > 0$ (emission)

 $T_S < T_{\gamma} \rightarrow \Delta T_h^{21} < 0$ (absorption)

One can cool baryons

Muñoz & Loeb [1802.10094] Falkowski & Petraki [1803.10096] Barkana [1803.06698] Barkana et al [1803.03091] Berlin et al [1803.02804] Liu et al [1908.06986]

One can add photons!

 \simeq

$$n_{\gamma}^{\text{inj}} > n_{\text{CMB}} \ (\lambda = 21 cm)$$

$$\frac{1}{\pi^2} \int_0^{\omega_{\max}} \frac{\omega^2 d\omega}{\exp[\omega/T] - 1} \simeq \frac{T\omega_{\max}^2}{2\pi^2}$$
$$0.21 \, x_{\max}^2 \, n_{\text{CMB}} \, , \quad \hbar = c = k = 1 \text{ units}$$

 $T_S > T_{\gamma} \to \Delta T_b^{21} > 0$ (emission)

 $T_S < T_{\gamma} \rightarrow \Delta T_b^{21} < 0$ (absorption)

One can cool baryons

Muñoz & Loeb [1802.10094] Falkowski & Petraki [1803.10096] Barkana [1803.06698] Barkana et al [1803.03091] Berlin et al [1803.02804] Liu et al [1908.06986]

Η

One can add photons!

 \simeq

$$n_{\gamma}^{\text{inj}} > n_{\text{CMB}} \ (\lambda = 21 cm)$$

$$\frac{1}{\pi^2} \int_0^{\omega_{\max}} \frac{\omega^2 d\omega}{\exp[\omega/T] - 1} \simeq \frac{T\omega_{\max}^2}{2\pi^2}$$
$$0.21 \, x_{\max}^2 \, n_{\text{CMB}} \, , \quad \hbar = c = k = 1 \text{ units}$$

$$n_{RJ} \sim 10^{-6} n_{\rm C}$$

Add numerous, soft quanta

Particle physics motivation

Rotation Curves

Evidence at all scales!!

Illustrations by Sandbox Studio, Chicago

Large Scale Structure

Regular Matter (~20%)

Dark Matter (~80%)

Standard Model

(Some) Canonical portals:

Scalar
 Higgs portal

 $\lambda H^2 S^2 + \mu H^2 S$

• Fermion Neutrino portal

y(HL)N

• Vector

Kinetic mixing portal

 $\epsilon F^{\mu
u}F'_{\mu
u}$

(Some) Canonical portals:

Scalar
 Higgs portal

 $\lambda H^2 S^2 + \mu H^2 S$

• Fermion Neutrino portal

 $\epsilon F^{\mu
u}F'_{\mu
u}$

y(HL)N

Vector

Kinetic mixing portal

16

(Some) Canonical portals:

Scalar
 Higgs portal

 $\lambda H^2 S^2 + \mu H^2 S$

- Fermion Neutrino portal
- Vector

Kinetic mixing portal

y(HL)N

 $\epsilon F^{\mu
u}F'_{\mu
u}$

Plus axion (like) dark matter

Light DM a, decaying to two dark photons via and ALP coupling: $\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{m_a^2}{2} a^2 + \frac{a}{4f_a} F'_{\mu\nu} \tilde{F}'^{\mu\nu} + \mathcal{L}_{AA'}$

Light DM *a*, decaying to two dark photons via and A
$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{m_a^2}{2} a^2 + \frac{a}{4f_a} F'_{\mu\nu} \tilde{F}'^{\mu\nu} + \mathcal{L}_{AA'}$$
Dark photon mixes with FM via "familiar' ki

$$\mathcal{L}_{AA'} = -\frac{1}{4}F_{\mu\nu}^2 - \frac{1}{4}(F_{\mu\nu}')^2 - \frac{\epsilon}{2}F_{\mu\nu}F_{\mu\nu}' + \frac{1}{2}m_{A'}^2(A_{\mu}')^2$$

ALP coupling:

Vector portal

Dark photon mixes with EM via "familiar' kinetic mixing

Light DM *a*, decaying to two dark photons via and ALP coupling

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{m_a^2}{2} a^2 + \frac{a}{4f_a} F'_{\mu\nu} \tilde{F}'^{\mu\nu} + \mathcal{L}_{AA'}$$
Vector points
Dark photon mixes with EM via "familiar' kinetic mixed

$$\mathcal{L}_{AA'} = -\frac{1}{4} F_{\mu\nu}^2 - \frac{1}{4} (F'_{\mu\nu})^2 - \frac{\epsilon}{2} F_{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2$$

Dark matter decays into dark photons

g:

rtal

ing

Light DM *a*, decaying to two dark photons via and ALP coupling

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^{2} - \frac{m_{a}^{2}}{2} a^{2} + \frac{a}{4f_{a}} F'_{\mu\nu} \tilde{F}'^{\mu\nu} + \mathcal{L}_{AA'}$$
Vector points
$$Vector points$$
Dark photon mixes with EM via "familiar' kinetic mixes
$$\mathcal{L}_{AA'} = -\frac{1}{4} F_{\mu\nu}^{2} - \frac{1}{4} (F'_{\mu\nu})^{2} - \frac{\epsilon}{2} F_{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^{2} (A'_{\mu})^{2}$$

Dark matter decays into dark photons

$$A' \frown \frown$$

g:

rtal

ing

Dark photons resonantly convert into photons

Light DM
$$a$$
, decaying to two da
 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{m_a^2}{2} a^2$

Dark matter decays into dark photons

Dark photons resonantly co

First, axion decays (that's easy)

 $= \frac{2\rho_{\rm DM} \left(z_{\rm dec}\right) \left(1+z\right)^3}{\tau_a H \left(z_{\rm dec}\right) m_a \omega \left(1+z_{\rm dec}\right)^3} \Theta \left(\frac{m_a}{2}-\omega\right)$ $\mathrm{d}n_{A'}$ $\mathrm{d}\omega$

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, *Phys.Rev.Lett.* 127 (2021) 1, 011102

First, axion decays (that's easy)

Second, resonant conversion of photons to dark photons

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, Phys.Rev.Lett. 127 (2021) 1, 011102

$$\begin{aligned} \frac{\mathrm{d}\langle P_{\gamma \to A'} \rangle}{\mathrm{d}z} &= \frac{\pi m_{A'}^2 \epsilon^2}{\omega(t)} \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \\ &\times \int \mathrm{d}m_{\gamma}^2 f(m_{\gamma}^2; t) \,\delta_{\mathrm{D}}(m_{\gamma}^2 - m_{A'}^2) \,m_{\gamma}^2 \end{aligned}$$

Some nice spectral features from this type of models

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, *Phys.Rev.Lett.* 127 (2021) 1, 011102

25

Some nice spectral features from this type of models

 $m_{\gamma}(z_{\rm res}) \sim m_{A'}$

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, *Phys.Rev.Lett.* 127 (2021) 1, 011102

Some nice spectral features from this type of models

 $m_{\gamma}(z_{\rm res}) \sim m_{A'}$

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, *Phys.Rev.Lett.* 127 (2021) 1, 011102

Effect on the brightness temperature

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, *Phys.Rev.Lett.* 127 (2021) 1, 011102

Effect on the brightness temperature

 $m_{A'} = 10^{-11} \text{ eV}$ $m_a = 5 \times 10^{-4} \text{ eV}$ $\epsilon = 5 \times 10^{-8}$

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, *Phys.Rev.Lett.* 127 (2021) 1, 011102

Effect on the brightness temperature

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, A. Urbano, *Phys.Rev.Lett.* 127 (2021) 1, 011102

But the model — despite of EDGES — is interesting, for example it can be enlarged to explain ARCADE excess

Assume there is a background of dark photons

But the model — despite of EDGES — is interesting, for example it can be enlarged to explain ARCADE excess

$$\frac{\mathrm{d}n_{\gamma}}{\mathrm{d}x}(x,z) = \frac{\rho_a(z)}{m_a} \frac{\alpha}{x} \underbrace{\frac{1}{\tau(z_{\star})}}_{\propto x^{-1}} \underbrace{\frac{1}{H(z_{\star})}}_{\propto x^{3/2}} \underbrace{\int_{z}^{z_{\star}} \mathrm{d}z' \frac{\mathrm{d}\langle P_{A' \to \gamma} \rangle}{\mathrm{d}z'}}_{\propto x^{-1}}$$

Assume there is a background of dark photons

$$\tau(z) = \tau_{\rm vac} \left[1 + n f_{A'}^{\rm BB}(z) \right]$$

Stimulated decay

But the model — despite of EDGES — is interesting, for example it can be enlarged to explain ARCADE excess

AC, H. Liu, S. Mishra-Sharma, M. Pospelov, J. T. Ruderman, Phys.Rev.D 107 (2023) 12, 123033

2) Better treatment of astrophysical uncertainties

2) Better treatment of astrophysical uncertainties

3) Study CMB and 21 cm anisotropy

2) Better treatment of astrophysical uncertainties

3) Study CMB and 21 cm anisotropy

Thanks for the attention!

Back-up

Back-up

This will then affect CMB

Fixsen+ astro-ph/9605054

The CMB is very close to a **perfect blackbody**.

Spectral distortions due to disappearing photons are **highly constrained**.

CMB Constraints $\gamma \rightarrow A'$ PDF Systematics

Ψ

Check some systematics

E. Adermann et al, (2018)