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Why 21-cm?

Probing strongly interacting 

small dark fractions

Too strong → atmosphere overburden

Small fraction → small rates

Not strong enough → Small rates

Too massive → Insufficient 𝐸𝐶𝑀

21-cm can close the gap between colliders and 

direct detection



How 21-cm?



Elastic DM-SM interactions cool the baryonic gas

Enhanced absorption at cosmic dawn 

(and dark ages)

Dark Cooling in 21-cm Cosmology

[Tashiro et al. 2014, Munoz et al. 2015]
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(and dark ages)

Dark Cooling in 21-cm Cosmology

[Tashiro et al. 2018]

Unique features

due to Ly𝛼 inefficiency



Which DM scenarios?
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• Order one cooling requires large cross sections

𝑑𝑇𝑘

𝑑𝑡
= −2𝐻𝑇𝑘 +
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3
ሶ𝑄𝐷𝑀

Astrophysical heating → 0



Dark Cooling: Viable Models

• mDM is the only viable model that can lead to an 𝒪(1) cooling at cosmic dawn

• CMB anisotropy constraints imply fm ≡
Ω𝑚𝐷𝑀

Ω𝐷𝑀
< 0.4%

[Barkana et al. 2018]

Joint oscillations

Ω𝑚𝐷𝑀 < Ω𝑏 uncertainty

• Order one cooling requires large cross sections

[K. K. Boddy et al, 2018]
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Dark Cooling – Viable Models

• mDM is the only viable model that can lead to an 𝒪(1) cooling at cosmic dawn

• CMB constraints imply 𝑓𝑚 < 0.4%

No CoolingInsufficient heat capacity at large masses
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• General scenario allows 𝑔𝑚𝑔𝐶 ≠ 0

• mDM-CDM interactions effectively increase the heat capacity of mDM 

[Liu et al. 2019]
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• 𝑔𝑚𝑔𝐶 = 0 is arbitrary

• General scenario allows 𝑔𝑚𝑔𝐶 ≠ 0

• mDM-CDM interactions effectively

    increase the heat capacity of mDM 

𝜎𝑇 = 𝜎0𝑣−4

No Cooling



Elastic DM-SM interactions cool the baryonic gas

Enhanced absorption at CD

(and dark ages)

Dark Cooling – Enhanced Absorption

[Tashiro et al. 2018]

Unique features

due to Ly𝛼 inefficiency

Anomalous absorption signal

Probe DM-SM interactions



Dark Cooling in 21-cm Cosmology

How deep is the dark cooling signal?
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(Maximal mDM-CDM interactions)
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Assume astrophysical model by

 Cohen et al. 2017

min 𝑇21
𝑆𝑀 = −120𝑚𝐾

(Maximal mDM-CDM interactions)



Dark Cooling in 21-cm Cosmology

min 𝑇21
𝑆𝑀 = −120𝑚𝐾 min 𝑇21

𝑆𝑀 = −80𝑚𝐾

Assume astrophysical model by 

Park et al. 2019

Assume astrophysical model by

 Cohen et al. 2017

(Maximal mDM-CDM interactions)(Maximal mDM-CDM interactions)
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Cooling vs Astrophysics

Astrophysical heating sources counter cooling

X-ray heat rate × 𝟏𝟎



𝐿𝑦𝛼 photons couple 𝑇𝑠 → 𝑇𝐶
𝑒𝑓𝑓

→ 𝑇𝐾

𝒙𝜶 × 𝟎. 𝟏

Cooling vs Astrophysics



Reionization - Without HI there is no 21-cm 

signal

Cooling vs Astrophysics
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21-cm signal

Use the signal to study astrophysics



Cooling vs Astrophysics

21-cm signal

Use the signal to study astrophysics Limit astrophysics with other probes and 

study DM with 21-cm



The countering effects are subject to constraints

• Reionization

Electron scattering optical depth of CMB           𝜏𝑒 = 0.054 ± 0.0070 at 68% C.L.
[Planck 2018]
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The countering effects are subject to constraints

• Reionization

Electron scattering optical depth of CMB           𝜏𝑒 = 0.054 ± 0.0070 at 68% C.L.
[Planck 2018]

The dark fraction of pixels in QSO spectra         xHI ≤ 0.06 + 0.05 1𝜎  by z=5.9
[McGreeer et al. 2015]

• X-rays

Unresolved cosmic X-ray background               𝐼𝑋 ≤ 2.51 × 10−13𝑒𝑟𝑔𝑐𝑚−2𝑠−1 deg−2

[Fialkov et al. 2016, Cappelluti 2012, Lehmer et al. 2012]

Cooling vs Astrophysics



• Star formation

UV luminosity functions

[Park et al. 2018]

The countering effects are subject to constraints

Cooling vs Astrophysics



Astrophysics Modeling



Counter Cooling: Inefficient Ly𝛼

Lyman band emission from astrophysical sources
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• Assume Lyman band emission is dominated by popII (popIII) stars [Wyithe & Loeb 2004]

[Barkana & Loeb 2004, 

Leitherer et al. 1999,

Bromm & Larson 2004]
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Lyman band emission from astrophysical sources

• Lyman band photons are emitted

                by the same source as ionizing photons

• Assume Lyman band emission is dominated by popII (popIII) stars [Wyithe & Loeb 2004]

[Barkana & Loeb 2004, 

Leitherer et al. 1999,

Bromm & Larson 2004]
𝜖 =

ሶ𝜌⋆

ഥ𝑚𝑏

𝑑𝑁⋆

𝑑𝐸

𝑑
𝑁

⋆

𝑑
𝐸

1
0

−
6

𝑒
𝑉

−
2

 



𝑑
𝑁

⋆

𝑑
𝐸

1
0

−
6

𝑒
𝑉

−
2

 

Counter Cooling: Inefficient Ly𝛼

Lyman band emission from astrophysical sources

• Lyman band photons are emitted

                by the same source as ionizing photons

• Assume Lyman band emission is dominated by popII (popIII) stars

• Weak Lyman band emission due to

small 
𝑑𝑁⋆

𝑑𝐸
 is inconsistent with reionization by 𝑧 = 6

[Wyithe & Loeb 2004]

𝜖 =
ሶ𝜌⋆

ഥ𝑚𝑏

𝑑𝑁⋆

𝑑𝐸



Counter Cooling: Inefficient Ly𝛼

𝜖 =
ሶ𝜌⋆

ഥ𝑚𝑏

𝑑𝑁⋆

𝑑𝐸

• Weak Lyman band emission due to

      suppressed star formation is 

      inconsistent with measurements

      of UVLFs

𝑆𝐹𝑅 ∝ 𝐿𝑈𝑉,1500

• Model star formation efficiency

𝑓⋆ = 𝐹⋆

𝑀ℎ

𝑀⊙

𝛼⋆

𝑒−𝑀𝑐𝑢𝑡/𝑀ℎ

[Park et al. 2018]

[Sun et al. 2016 ]



Counter Cooling: Inefficient Ly𝛼

[Park et al. 2018]



Counter Cooling : Heating

𝑑𝑇𝐾

𝑑𝑙𝑜𝑔(𝑎)
= −2𝑇𝐾 +

1

𝐻
ሶ𝑄𝐷𝑎𝑟𝑘 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 + ሶ𝑄𝐶𝑜𝑚𝑝 + ሶ𝑄𝑋𝑟𝑎𝑦𝑠 + ሶ𝑄𝐶𝑀𝐵 + ሶ𝑄𝐿𝑦𝛼

Typically subdominant to X-rays

[Meiksin 2021, Venumadhav et al. 2018, 

Chen & Miralda 2003]

X-rays × 𝟏𝟎



Counter Cooling : Heating

• Soft band (<2KeV) X-ray emissivity

𝜖𝑋 =
ሶ𝜌⋆

ഥ𝑚𝑏

𝐸

𝐸0

−𝛼𝑋

Θ 𝐸 − 𝐸𝑚𝑖𝑛 𝛼𝑋 = 1

(HMXBs + attenuation in neutral ISM)
[Fragos et al. 2013, Das et al. 2017]



Counter Cooling : Heating

• Soft band (<2KeV) X-ray emissivity is dominated by HMXBs

𝜖𝑋 =
ሶ𝜌⋆

ഥ𝑚𝑏

𝐸

𝐸0

−𝛼𝑋

Θ 𝐸 − 𝐸𝑚𝑖𝑛 𝛼𝑋 = 1

(Does not account for softer additional populations)

• Upper limit on 𝜖𝑋 from unresolved X-ray background
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• Assume −400𝑚𝐾 sensitivity (∼twice the SARAS3 RMS) 



Dark Cooling: Enhanced Absorption

• Assume −400𝑚𝐾 sensitivity (∼twice the SARAS3 RMS) 

• Scan over the astrophysical parameter space

[Singh et al. 2021]



Dark Cooling: Enhanced Absorption

Current astrophysical knowledge is insufficient to robustly probe mDM 

with the global signal

What about the future?



Dark Cooling: Enhanced Absorption

• Assume −400𝑚𝐾 sensitivity (∼twice the SARAS3 RMS) 

• Scan over the astrophysical parameter space

Prospects including Athena



Dark Cooling: Enhanced Absorption

Terrestrial  reach

• Some of the experiments are not yet approved 

• Time scale is unclear



Counter Cooling: Inefficient Ly𝛼

Unique Feature of Dark Cooling



Counter Cooling: Inefficient Ly𝛼
𝑇𝑠

−1 =
𝑇𝛾

−1 + 𝑥𝛼𝑇𝛼
−1 + 𝑥𝑐𝑇𝑐

−1

1 + 𝑥𝛼 + 𝑥𝑐𝑥𝛼 =
8𝜋𝜆𝛼

2 𝛾𝛼𝐸21

9𝐴10𝑇𝛾
෍

𝐼=𝑐𝑜𝑛𝑡,𝑖𝑛𝑗

𝑆𝛼
𝐼  ҧ𝐽𝛼

𝐼

Line shape and Ly𝛼-H interactions

𝑆𝛼
𝐼 ∼ ∫ 𝑑𝐸 𝜙10 𝐸 + 𝜙01 𝐸

 𝐽𝐼 𝐸

ҧ𝐽𝛼
𝐼

Unaltered flux
(astrophysics)

[Chen & Miralda 2004, Hirata 2005]
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Counter Cooling: Inefficient Ly𝛼

Photons around line center lose energy due to 

redistribution and  recoil with H

Intensity drops around line center

Inefficient Ly𝛼 coupling
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Counter Cooling: Inefficient Ly𝛼

Photons around line center lose energy due to 

redistribution and  recoil with H

Intensity drops around line center

Inefficient Ly𝛼 coupling
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Counter Cooling: Inefficient Ly𝛼



• DM production mechanisms may lead to dark sectors

• A fractional mDM can leave a significant signature on the 21-cm global signal

• Currently, astrophysical uncertainties are too large to probe DM assuming a −400𝑚𝐾 

sensitivity

• This will change with better X-ray probes such as Athena 

• Three fluid mDM in 21-cm power spectrum 2212.08082.08082

• How does the three fluid mDM affect the HMF?

Thanks for listening

omerzvikatz@gmail.com
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