#### Interferometric observations of the 21 cm line: overview, challenges and current status

Gianni Bernardi

**INAF-IRA** 

"21 cm cosmology", Trieste, September 11-15, 2023

#### State of the art of the field



Barry et al. (2022)

#### 21 cm interferometric observations are (still) challenging



#### **Foreground separation ALWAYS works in simulations**



Chapman et al. (2015)

#### What does an interferometer measure?



$$V_{ij}(\nu) = \int_{\Omega} A(\nu)I(\nu)e^{2\pi i\,\hat{b}\cdot\hat{s}}\,ds$$
$$\tilde{V}_{ij}(\tau) = \int_{B} V_{ij}(\nu)e^{2\pi i\nu\tau}\,d\nu$$

#### The wedge paradigm



Pober et al. (2013)







#### **HERA**



#### LOFAR



#### LOFAR



#### MWA



#### Also the receiving element matters



Thyagarajan et al. (2015)

## What does an interferometer measure? (aka, a walk through calibration)



#### continue walking...

$$\tilde{g}_{i}(v) = g_{i}(v) + \varepsilon_{j}(v) \qquad \tilde{g}_{j}(v) = g_{j}(v) + \varepsilon_{j}(v)$$

$$V^{m}_{ij}(v) = (g_{i}(v) + \varepsilon_{i}(v))^{-1} (g^{*}_{j}(v) + \varepsilon^{*}_{j}(v))^{-1} V^{o}_{ij}(v) =$$

$$\approx V^{T}_{ij}(v) - (\varepsilon_{i}(v) + \varepsilon^{*}_{j}(v)) V^{T}_{ij}(v) = V^{T}_{ij}(v) + \Delta(v) V^{T}_{ij}(v)$$
We think we can separate
$$W^{F}_{ij}(v) + V^{EoR}_{ij}(v) + \Delta(v) V^{F}_{ij}(v)$$
The EoR signal we want to measure
Contamination term that can easily jeopardize the EoR

ų,

#### What does the wedge look like in real life?



#### What does the wedge look like in real life?



Do we know what corrupts our "wedge ideal picture"?

Sometimes yes, sometimes no...

#### 1) Know thy sky



#### 1) Know thy sky



#### 2) Ionosphere



#### 2) Ionosphere

# $V_{12}(u,v) = G_1(t)B_1(v) \left[ \int_{\Omega} E_1(l,m,v) Z_1(t) I(l,m,v) Z_2^H(t) E_2^H(l,m,v) e^{-2\pi i (ul+vm)} dl dm \right] B_2^H(v) G_2^H(t)$



#### **3) Know thy primary beams**

$$V_{12}(u,v) = G_1(t)B_1(v) \left[ \int_{\Omega} E_1(l,m,v) Z_1(t)I(l,m,v)Z_2^H(t) E_2^H(l,m,v) e^{-2\pi i(ul+vm)} dldm \right] B_2^H(v)G_2^H(t)$$

#### 3) Know thy primary beams



Beams are time variable (larger stations/dishes have good sidelobe rejection/bad power spectrum



#### 3) Know thy primary beams

20

10

-10

-20

-30



- time and frequency beam structure shes have couples with foregrounds and leaks footprin power in the EoR window;
- keep beams steady (if possible);
- model beams and sky accurately not easy as they are degenerate;
- redundancy does not help much here... веать are rrequency variable!



#### 3) Know thy primary beams (better)



### Particularly "bad" as it invalidates redundancy

#### Fagnoni et al. (2021)



#### 4) Mitigating systematics



#### 4) It has worked well so far in some cases...



The HERA collaboration (2023, 2022), Aguirre et al. (2021), Kern et al. (2020a, b)

#### 5) Mitigating systematics: fringe rate filters





Charles et al. (2023)

#### 6) Mitigating systematics: closure phase



Keller et al. (2023)

#### The SKA is no longer so far in the future

