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Mapper of the IGM Spin Temperature (MIST)

Experiment began in 2018
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Frequency Range: 25-105MHz |55.5 >z > 12.5
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Two Instruments Built

- Single-antenna, total-power Field measurements of spectra and
radiometers impedance of antenna

- Frequency range 25-105 MHz

Small, high portability for
deployment at remote locations
- Wideband dipole antennas

Power consumption of 17 watts
- Antennas directly above ground,
without metal ground plane

Powered by 12 V batteries







Electronics

Front-end box (analog) Back-end box (digital)
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Context. The observation of the global 21 em signal produced by neutral hydrogen gas in the intergalactic medium (IGM) during the / V/
Dark Ages, Cosmic Dawn, and Epoch of Reionization requires measurements with extremely well-calibrated wideband radiometers. °
single-antenna, global 21 cm experiment.

Methods. The design of MIST was guided by the objectives of avoiding systematics from an antenna ground plane and cables around

the antenna, as well as maximizing the instrument’s on-sky efficiency and portability for operations at remote sites.

Results. We have built two MIST instruments, which observe in the range 25-105 MHz. For the 21 cm signal, this frequency range

approximately corresponds to redshifts 55.5 > 7 > 12.5, encompassing the Dark Ages and Cosmic Dawn. The MIST antenna is a

a metal ground plane. The instruments run on 12 V batteries and have a maximum power consumption of 17 'W. The batteries and

electronics are contained in a single receiver box located under the antenna. We present the characterization of the instruments using

electromagnetic simulations and lab measurements. We also show sample sky measurements from recent observations at remote sites
in California, Nevada, and the Canadian High Arctic. These measurements indicate that the instruments perform as expected. Detailed
analyses of the sky measurements are left for future work.

Chile
Cck
' National Radio Astronomy Observatory, Charlottesville, VA 22903, USA O U t
Aims. We describe the design and characterization of the Mapper of the [GM Spin Temperature (MIST), which is a new ground-based,
horizontal blade dipole of 2.42 m in length, 60 cm in width, and 52 ¢m in height above the ground. This antenna operates without
Key words. methods: observational — galaxy: general — instrumentation: miscellaneous — Astronomical instrumentation, methods 1 °
and techniques — Cosmology: observations, dark ages, reionization, first stars a rX IV ° 2 3 O 9 ° O 299 6

1. Introduction reionization (EoR) have to be conducted at v < 220 MHz!. Sev-

i eral radio experiments are trying to detect this cosmological sig-
The measurement of the 21 ¢m line from neutral hydrogen gas  pa) They can be classified into those targetting the sky-averaged
in the intergalactic medium (IGM) has been recognized as a global component, and antenna arrays focussing on spatial

promising way to map the evolution of the Universe during its  apisotropies. Ground-based elobal 21 ¢m experiments include



Field Measurementsin 2022
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McGill Arctic Research
Station (MARS)
~79.38° N

Canadian High Arctic
July 2022






Antenna Temperature, 19 hours

Deep Springs Death Valley Arctic

time from start of observation [h]
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antenna temperature [K]

Deep Springs Valley
Instrument 1
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Death Valley
Instrument 2
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McGill Arctic Research Station
Instrument 2
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Data from Arctic: Residuals for 4-term Polynomial Scaled by Power Law

LST [h]
[40 K per division]
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Field Measurementsin 2023



McGill Arctic Research
Station (MARS)
~79.38° N

Canadian High Arctic
April-May 2023
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Antenna Temperature, 19 hours

time from start of observation [h]

Arctic

10 A

12 A

16 A

18 A

35 45 55 65 75 85 95 105
frequency [MHz]

I ]

1 5 10 50 100 500
antenna temperature [103 K]



Beam Efficiency (1 - ground loss fraction)

Nbeam [%]
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Antenna Reflection Coefficient
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Antennalmpedance
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EM Simulations




Fitting Models to Impedance Measurements

200
— data

— model

175 ~
150 A
125 -

125

X [Q]
I
U
o

—100 A
—125 A

—150 T T T T
25 45 65 85 105 125

frequency [MHz]



31

02

&2

oy = 0.12

+0.00
—0.00

£ =1.07*33

Fitting Models to Impedance

— +0.02
0, = 0.03%3:92

£ = 37.474383%

Measurements

d=219*988

L =13.61+333

&




Ground Penetratin GPR) Measurements

100 m x 100 m area centered at the MIST antenna
Area was swept by pulling GPR with skidoo

Common mid-point (CMP) measurements also conducted
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Ssummary

MIST working toward detection of Global 21-cm
signal from the early Universe.

Measuring the sky down to 25 MHz, into the Dark
Ages frequencies.

Data sets already available to study the astrophysical
foreground.

Making progress on the data analysis. Core of the
work is on the instrumental calibration.

Characterization of the soil is critical. Using different
techniques for this purpose.

We hope to present astrophysical results soon!

Check out instrument paper on arXiv: 2309.02996

Email: ian.hendricksen@mail.mcgill.ca
GitHub: lan-Hendricksen
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