6th Global 21-cm Workshop IFPU Focus Week, 21-cm Cosmology IFPU, Trieste, Italy Sept 12, 2023

Status of 21-cm Global Signal

Raul Monsalve

Redshifted 21-cm signal

- Unpolarized diffuse foreground
- Polarized diffuse foreground

ground

Polarized Foregrounds

Spinelli, Bernardi, Santos (2019)

Next:

Instrumental Stuff

Receiver Calibration

- Receiver gain and temperature
- Typically obtained from lab and field measurements of calibration standards
- Impedance mismatch between antenna and receiver input

(for single-polarization antenna)

$$T_{S}(\nu) = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} T_{sky}(\theta, \phi, \nu) D(\theta, \phi, \nu) \sin \theta d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} D(\theta, \phi, \nu) \sin \theta d\theta d\phi}$$

Beam Chromaticity Correction

$$C(\nu, t) = \left(\frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} T_{GSM}(\theta, \phi, \nu, t) D_{c}(\theta, \phi, \nu) \sin \theta d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} D_{c}(\theta, \phi, \nu) \sin \theta d\theta}\right)$$
$$\times \left(\frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} T_{GSM}(\theta, \phi, \nu, t) D_{c}(\theta, \phi, \nu_{r}) \sin \theta d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} D_{c}(\theta, \phi, \nu_{r}) \sin \theta d\theta}\right)^{-1}$$

Measurement Efficiency (1-Losses)

$$T_A(\nu) = \eta(\nu)T_S(\nu) + \left[1 - \eta(\nu)\right]T_{phys}$$

$$T_{S} = \frac{T_{A} - [1 - \eta_{rad}\eta_{beam}\eta_{balun}]T_{phys}}{\eta_{rad}\eta_{beam}\eta_{balun}}$$

Radiation Efficiency

$G(\theta,\phi,\nu)=\eta_{rad}(\nu)D(\theta,\phi,\nu)$

Beam Efficiency

$$\eta_{beam}(\nu) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi/2} D(\theta, \phi, \nu) \sin \theta d\theta d\phi$$

Sensitivity of the Ground

Urgently Needed: Accurate Emulator of Antenna Performance

Data Calibrated Differently

Models Constraints Differently

Results Reported Differently

Bowman, Rogers, Hewitt (2008) - EDGES

Redshift 8 10 9 250 200 150 100 50 ∆T [mK] -50 -100 -150 -200 -250 150 160 130 140 170 180 Frequency [MHz]

- ~4 hours of observations
- 3-position switching
- 130 190 MHz

- 8-term polynomial
- 75 mK residuals (after smoothing)

Bowman, Rogers, Hewitt (2008) - EDGES

- Analytical EoR model centered at z=8
- Amplitude and duration varied

Bowman and Rogers (2010) - EDGES

Noise 6 mK at 150 MHz and 1 MHz

Amplitude fixed, free parameter only duration

Voytek et al. (2014)

-SCI-HI

- 50-minute integration per day
- 9 days of data
- 2-MHz resolution
- 3 calibration approaches (2 approaches using Global Sky Model)
- 3-term Log-Log foreground model

$$\log_{10} T_{\rm GM}(\nu) = \sum_{k=0}^{n} a_k \left[\log_{10} \left(\frac{\nu}{70 \text{ MHz}} \right) \right]^k$$

Bernardi et al. (2016) -LEDA

- 50-85 MHz
- Gaussian model for cosmic dawn feature
- 8-term log-log polynomial
- Bayesian analysis

Bernardi et al. (2016) -LEDA

Bernardi et al. (2016) -LEDA

 A_{HI}/mK ν_{HI}/MHz σ_{HI}/MHz

 $-890 < A_{\rm H_{I}} < 0$ mK and $\sigma_{\rm H_{I}} > 6.5$ MHz

at 95% confidence

Singh et al. (2017,2018)

-SARAS 2

- Spherical monopole antenna
- Correlation spectrometer
- Estimating the total efficiency using GMOSS foreground model
- 63 h of data
- Removing polynomial within range 110-200 MHz
- Probing semi-numerical models from Cohen et al (2017)
- 2 methods: Likelihood ratio and fitting a scale

Monsalve et al. (2017,2018,2019) EDGES High-Band

 $\hat{T}_{\rm fg}(\nu) = \sum_{i=1}^{4} a_i \nu^{-2.5+i}$ i=0

21	50		MM	Mohm	•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		a new d	61 mK
2.		- ·	1 1 1 V V	-400	··		NO 10-10-10		monther	~~~~~	57 mK
23		-	- WI **	w v v ~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	64 mK
2	52	-	WW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm		~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	mm	CE mK
2	53	- '	wh	m	mm	mun	~~~~	mm		my	05 mK
2	54	-	Mrv	mm	~~~~~	mun	mm	man	www.	mm	60 mK
2!	55	-	W # ~ V	hum	m	mm	~~~~	mmmn	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	56 mK
2!	56	-	Mr M	mm	1.mm	mmm	rum	mm	mmm	mm	69 mK
2	57	-	Nº1-A	mm	mm	mm	mm	m	mm	when	63 mK
2	58	-	Mm	mm	m	m		mm	mm	mm	61 mK
2!	59		mad ha	mm	m	mm	~~~~	m	mm		61 mK
20	60	_	MAL.TA	num	1.mm	m	~~~	mm	*****		53 mK
2	61		1.00	mm		mmm	~~~~~	man			53 mK
2	62	L,	. AMIN	man	~~~/~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· ····	mon	man Makaka	mont	96 mK
- 2	65		Mar 1	Annhal	n. m	my		AAA	Ammon	AAMAA A	93 mK
	66		I ANAN		· · · ·					M. M.	55 mK
	67				~~~~	· · · · · · · · · · · · · · · · · · ·	~~~~	Wood	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		52 mK
≧ 2	60	-	-194V		m				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		56 mK
		-	1411	An	~~~	mun	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- marin	www.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	56 mK
	69	-	~INVA)	www	mm		~~~~		·······	m	50 mK
¥ 2	/0	-	MM	more	r.m.	m	~~~~	mm	mmm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	61 mK
≥ 2	/1	-	N V V M	mm	m	m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	54 MK
<u>z</u> 2	73	-	ANW WW	Mun		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	m	mmm	mm	70 mK
- 2	74		MM	mm	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mon	55 mK
2	75	-	Mr-r	1 mm	mm	mm	~~~	mm	mm	mmm	55 mK
× 2	78	-	Mrn	mm	mm	~~~~~	~~~~~	mm.	m	mm	51 mK
5 2	79		-WLr	m	mm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mm	43 mK
a 28	80	-)	MAN	mm	~~~~	~~~~	mm	- mm		m	47 mK
° 28	82	- 1	INVIV	mm	mm	mm	mm	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man,	52 mK
28	83	L. 1	MM	mm	m	m	~~~~~			m	61 mK
28	84	-	W.		mm	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	54 mK
2	85	-	Mmun	min	·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~~	man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nn	52 mK
2	86	L .	Max	mm	~~~	· ·····	mm	m	mm	mm	50 mK
2	87		1-21.1	mm	·····	m	~~~~	- Maria	mmm	wmm	56 mK
2	88										43 mK
29	80		AMA			·····			~~~~		51 mK
20	01				A. 11 And	~				-0.0	60 mK
2	02		· · · · · · · · · · · · · · · · · · ·	/ \ \ \			~~~~~				49 mK
2:	92	- '	1. w. w.	vv www	~~~~		~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manut	46 mK
2	22		M N	ruum	~~~~~		~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····	58 m¥
2	90		M.M	purm	· · · · · · ·		~~~~~	~~~~~~		~~~~~	45 m¥
2	98	F ·		mm	mm	·····	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmmm	mm	81 mV
29	99		1mmly ,	And	N Mmh	·····	www	mm	Jun with m	~~~~	91 IIK
		9	0	11	.0	130		150	170	190)
		2				f	reque	ncv [MH	7]		
							- yuc		-1		

- Phenomenological signals
- Hot EoR, Tanh evolution of neutral fraction
- Cold EoR, Tanh evolution, strong Ly-alpha, NO IGM heating, only EoR. Provided by Jordan Mirocha
- Gaussian absorption models, with and without asymmetry

 z_r

 z_r

 z_r

Monsalve, Fialkov, et al. (2019) EDGES High-Band

21cmGEM

 $\hat{T}_{\rm fg}(\nu) = \sum_{i=0}^{4} a_i \nu^{-2.5+i}$

Parameter	Ranges	and	Sampling	Scale
-----------	--------	-----	----------	-------

Parameter	Min	Max	Unit	Scale
V _c	4.2	76.5	$\rm km~s^{-1}$	log ₁₀
f_*	10^{-3}	0.5		\log_{10}
$f_{\mathbf{X}}$	10^{-5}	10		\log_{10}
$ u_{\min}$	0.1	3	keV	linear
$ au_{ m e}$	0.055	0.09		linear
<i>R</i> _{mfp}	10	50	Mpc	linear

Monsalve, Fialkov, et al. (2019) EDGES High-Band

External Priors

Constraints from External Priors

Constraints from EDGES High-Band

Constraints from External Priors + EDGES High-Band

Monsalve, Greig, et al. (2018)

Likelihood of 21-cm models computed after marginalizing over linear foreground parameters

$$\mathcal{L}(d|\boldsymbol{\theta}_{21}) = \int \mathcal{L}(d|\boldsymbol{\theta}_{21}, \, \boldsymbol{\delta}_{\mathrm{fg}}) d\boldsymbol{\delta}_{\mathrm{fg}}$$
$$= \sqrt{\frac{(2\pi)^{N_{\mathrm{fg}} - N_{\nu}}}{|\boldsymbol{\Sigma}||C^{-1}|}} \exp\left\{-\frac{1}{2}d_{\star}^{T}(\boldsymbol{\Sigma} + V)^{-1}d_{\star}\right\}$$

Two Instruments / Several Configurations

Redshift, z

How to Explain Deep Absorption?

Interaction of Baryons with Dark Matter?

Enough IGM cooling can be achieved if (Muñoz & Loeb 2018):

- ~ 1% of DM particles
- have mass ~ **1-60 MeV**
- and posses electric mini-charge,
 ~10⁻⁶ the charge of an electron

Possibility of non-gravitational interaction between baryons and dark matter.

R. Barkana 2018, Nature, 555, 71

The Redshifted 21 cm Signal in the EDGES Low-band Spectrum

Saurabh Singh^{1,2,3} and Ravi Subrahmanyan³

(2019)

- MS + Sinusoid + Gaussian
- Best-fit Gaussian has "standard" amplitude
- Lower residuals RMS
- Lower BIC

1

The Redshifted 21 cm Signal in the EDGES Low-band Spectrum

Saurabh Singh^{1,2,3} and Ravi Subrahmanyan³

1

- Template from Cohen et al. (2017)

(2019)

Parameters of the 21 cm Signals Favored by the Data

Case	f_*	$V_c ({\rm km \ s}^{-1})$	f_X	au	$R_{\rm mfp}$ (Mpc)
A	0.05	35.50	14.7	0.061	70
В	0.158	35.50	1.58	0.066	70
С	0.158	35.50	1.58	0.082	70

Verification with EDGES-2 Mid-Band

Low-Band

Mid-Band (~25% smaller)

Same Ground Plane as Low-Band

Objective:

Shift some of the spectral structures from the instrument to higher frequencies

Verification with EDGES-2 Mid-Band

For many data cuts, adding a flattened Gaussian absorption model consistent with Bowman et al. (2018) **improves the fit**.

Bayesian pipeline is being written to analyze all the aspects of the experiment in a statistically robust and self consistent way

Verification with EDGES-2 Rotated Low-Band

Different EM interaction between antenna and ground plane

Verification with EDGES-2 Rotated Low-Band

Low-Band

Rotated Low-Band

Objective:

Change the spectral structures from interaction between antenna and ground plane

Verification with EDGES-2 Rotated Low-Band

For many data cuts, adding a flattened Gaussian absorption model consistent with Bowman et al. (2018) **improves the fit**.

Bayesian pipeline is being written to analyze all the aspects of the experiment in a statistically robust and self consistent way

Recent progress by SARAS+

On the detection of a cosmic dawn signal in the radio background

(2022)

Saurabh Singh^{®1,2,3}[™], Jishnu Nambissan T.^{1,4}, Ravi Subrahmanyan^{®1,5}, N. Udaya Shankar¹, B. S. Girish^{®1}, A. Raghunathan^{®1}, R. Somashekar^{®1}, K. S. Srivani^{®1} and Mayuri Sathyanarayana Rao^{®1}

SARAS 3 on a lake in India

The value of 1 is within 90% confidence range.

90% confidence range for scale, considering systematics and range of EDGES signals.

- 55-85 MHz band modeled with:
 - 7-term log-log polynomial
 - + 1 scale factor for best-fit EDGES signal

A comprehensive Bayesian reanalysis of the SARAS2 data from the epoch of reionization

H. T. J. Bevins^(b),¹ E. de Lera Acedo^(b),^{1,2} A. Fialkov,^{2,3} W. J. Handley,^{1,2} S. Singh,^{4,5,6} R. Subrahmanyan⁷ and R. Barkana^(b),^{8,9}

		Parameter	Prior	Prior type
	Systematic	$lpha_{ m sys}$	0–10	Uniform
Fitting the foreground with a		Ă	0–1 K	
"partially smooth function"		Р	10–70 MHz	
suggests that there is a		ϕ	$0-2\pi$ rad	
Sinusolual systematic	Signal	τ	0.026–0.1 (STA) / 0.035–0.077	Uniform
			(ERB)	
		α	1.3 (STA only)	
		E_{\min}	0.1–3 keV (STA only)	
		$R_{ m mfp}$	30 (STA) / 40 (ERB) Mpc	
		f_*	0.001–0.5	Log-Uniform
		V_c	$4.2 - 100 \text{ km s}^{-1}$	
		f_X	0.0001-1000	
		$f_{\rm radio}$	1–99 500 (ERB only)	

(2022)

A comprehensive Bayesian reanalysis of the SARAS2 data from the epoch of reionization

H. T. J. Bevins^(b), ¹ E. de Lera Acedo^(b), ^{1,2} A. Fialkov, ^{2,3} W. J. Handley, ^{1,2} S. Singh, ^{4,5,6} R. Subrahmanyan⁷ and R. Barkana^(b), ^{8,9}

(2022)

nature astronomy

Article

https://doi.org/10.1038/s41550-022-01825-6

Table 2 | The astrophysical priors

(2022)

Astrophysical constraints from the SARAS 3 non-detection of the cosmic dawn sky-averaged 21-cm signal

Received: 10 May 2022

H. T. J. Bevins ^{1,2} →, A. Fialkov^{2,3}, E. de Lera Acedo^{1,2}, W. J. Handley ^{1,2}
 S. Singh⁴, R. Subrahmanyan ⁵ & R. Barkana ^{6,7,8}

Accepted: 21 September 2022

Fitting the foreground with a 7-term log-log polynomial

Parameter	Radio background	Range
f.	CMB only, synchrotron, radio galaxies	0.001–0.5
V _° (km s ⁻¹)	CMB only, synchrotron, radio galaxies	4.2-100
f _x	CMB only, synchrotron, radio galaxies	0.001–1,000
f _{radio}	Radio galaxies	1.0–99,500
A ^{1,420} _r	Synchrotron	0–47
τ	CMB only	0.026-0.103
	Synchrotron	0.016-0.158
	Radio galaxies	0.035-0.077
a	CMB only	1.0–1.5
E _{min} (keV)	CMB only	0.1–3.0
R _{mfp} (Mpc)	CMB only, synchrotron, radio galaxies	Fixed at 30, 40 and 40

nature astronomy

Article

https://doi.org/10.1038/s41550-022-01825-6

(2022)

Astrophysical constraints from the SARAS 3 non-detection of the cosmic dawn sky-averaged 21-cm signal

Received: 10 May 2022

Accepted: 21 September 2022

H. T. J. Bevins $\mathbb{O}^{1,2}$, A. Fialkov^{2,3}, E. de Lera Acedo^{1,2}, W. J. Handley $\mathbb{O}^{1,2}$, S. Singh⁴, R. Subrahmanyan \mathbb{O}^5 & R. Barkana $\mathbb{O}^{6,7,8}$

Table 3 | Summary of key constraints from SARAS 3 (this work), HERA and SARAS 2 experiments

	SARAS 3	HERA	SARAS 2
Signal type	Global	Power spectrum	Global
Redshift range	<i>z</i> ≈15–25	z≈8 and z≈10	z≈7–12
L_r/SFR (WHz ⁻¹ M_{\odot}^{-1} yr)	≳1.549×10 ²⁵	≥4.00×10 ²⁴	-
$L_r/SFR \cap L_x/SFR$ (erg s ⁻¹ M_{\odot}^{-1} yr)	≳1×10 ²⁵ ∩≲1.09×10 ⁴²	≳4.00×10 ²⁴ ∩≲7.60×10 ³⁹	≳4.07×10 ²⁴ ∩≲6.3×10 ³⁹
M (M _☉)	$4.4 \times 10^{5} \le M \le 1.1 \times 10^{7}$	-	-
f.	≳0.05	-	-
f₊∩M(M _☉)	≳0.03∩≲8.53×10 ⁸	-	-

Joint analysis constraints on the physics of the first galaxies with low frequency radio astronomy data (2023)

Harry T. J. Bevins^{1,2*}, Stefan Heimersheim³, Irene Abril-Cabezas³, Anastasia Fialkov^{2,3}, Eloy de Lera Acedo^{1,2}, William Handley^{1,2}, Saurabh Singh⁴ and Rennan Barkana^{5,6}

Thank You Very Much