Status of 21-cm cosmology

21 cm line from neutral hydrogen

First theoretically predicted by van de Hulst in 1942.

Detected by Ewen and Purcell in 1951.

Widely used to map the HI content of our galaxy and nearby galaxies

Circinus Galaxy

ATCA HI image by B. Koribalski (ATNF, CSIRO), K. Jones, M. Elmouttie (University of Queensland) and R. Haynes (ATNF, CSIRO).

But the potential of the 21-cm line as a cosmic probe is revolutionary

???

<u>;;;</u>;

. .

Cosmic 21-cm

<u>??</u>?

ர

SKA-low

We measure the difference in intensities of the CMB and the cosmic HI.

Cosmic 21-cm

5

225

We measure the difference in intensities of the CMB and the cosmic HI.

Cosmic 21-cm

-57

77

We measure the difference in intensities of the CMB and the cosmic HI.

SKA-low

Cosmic 21-cm signal

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d}\mathsf{v}_{r}/\mathsf{d}\mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10}\frac{0.15}{\Omega_{\mathrm{M}}\mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b}\mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$

What can we learn?

Timing of reionization and the properties of the (unseen) galaxies that drive it

 Galaxy clustering + stellar properties → evolution of large-scale EoR/CD structures

McQuinn+ 2007

94 Mpc

Abundant, faint galaxies vs

Rare, bright galaxies

Properties of sources that heat the IGM

High Mass X-ray Binaries are expected to dominate the X-ray background beyond z >~ 5

"Fiducial" scenario: the IGM is heated by X-rays from HMXBs before reionization

SFR required to reionize the Universe:

$$[\dot{\rho}_{\rm SFR}]_{\rm ion} = 4.4 \times 10^{-1} \, \bar{x}_i \, Z_{20}^{3/2} \, \left(\frac{t_{\rm SFR}}{0.1 \, t_H}\right)^{-1} \\ \times \left(\frac{f_{\rm esc}}{0.1 \, 4000}\right)^{-1} \, \, \mathcal{M}_{\odot} \, \, \mathrm{yr}^{-1} \, \, \mathrm{Mpc}^{-3}, \, (11)$$

is larger than the SFR needed to heat it to above CMB with HMXBs:

$$\begin{aligned} [\dot{\rho}_{\rm SFR}]_{\rm X} = & 4.0 \times 10^{-2} Z_{20}^{5/2} \left(\frac{t_{\rm SFR}}{0.1 t_H}\right)^{-1} \left(\frac{f_X}{0.2}\right)^{-1} (10) \\ & \times \left(\frac{L_X/{\rm SFR}}{10^{40} \text{ erg s}^{-1} \text{ M}_{\odot}^{-1} \text{ yr}}\right)^{-1} \text{ M}_{\odot} \text{ yr}^{-1} \text{ Mpc}^{-3}, \end{aligned}$$

McQuinn & O'Leary (2012)

Patterns in the Epoch of Heating

High-energy processes in the first galaxies are also encoded in the cosmic 21-cm signal

'soft' SED ~ hot ISM

'hard' SED ~ HMXBs

differences are easily detectable with HERA and the SKA

Pacucci, AM + 2014

More exotic sources of early IGM heating?

 Cosmic Rays? (e.g. Leite+2017; Jana and Nath 2018; Gessey-Jones+2023)

More exotic sources of early IGM heating?

- Cosmic Rays? (e.g. Leite+2017; Jana and Nath 2018; Gessey-Jones+2023)
- Dark matter annihilations? (e.g. Evoli+2014; Lopez-Honorez+2016)

heating is more uniform —> not degenerate with galaxy heating

More exotic sources of early IGM heating?

- Cosmic Rays? (e.g. Leite+2017; Jana and Nath 2018; Gessey-Jones+2023)
- Dark matter annihilations? (e.g. Evoli+2014; Lopez-Honorez+2016)

see Gaetan's talk!

• Dark matter decay? (e.g. Facchinetti+ 2023)

Star formation is suppressed in regions with large relative velocities z=15 $v_{\rm bc} = 1\sigma_{\rm rms}$ $v_{\rm bc} = 0\sigma_{\rm rms}$ $v_{\rm bc} = 2\sigma_{\rm rms}$ $v_{\rm bc} = 3\sigma_{\rm rms}$ 500 10^{3} number density [cm⁻³] 250 10² y [ckpc/h] 10¹ 0 10⁰ -250 10 10¹ number density [cm⁻³] 5 10⁰ y [ckpc/h] 10^{-1} 0 - 10-2 -5 1 10^{-1} 0.5 y [ckpc/h] 10^{-2} 0

-0.5

-1

Standard ruler

Munoz 19, Park+19, Cain+20

Munoz, Qin, AM+ 2022

Measuring the expansion history

Munoz+ 2019

That sounds great, but where are we now?

Current status global experiments

Claim of a detection by EDGES

Bowman et al. 2018

Current status global experiments

Claim of a detection by EDGES

BUT

No evidence of the signal in SARAS3

Singh+ 2021

6th order polynomial + NO cosmic signal

Current status global experiments

Claim of a detection by EDGES

BUT

No evidence of the signal in SARAS3

Upcoming results from REACH, MIST, RHINO, etc. updates from EDGES, SARAS (see more during global section)

First generation 21-cm interferometers

PAPER

It is HARD!

Hope is to measure PS in the "EoR window"

figure courtesy of J. Dillon

Hope is to measure PS in the "EoR window"

Theoretical modeling is also hard...

Measurements are improving, but currently only upper limits on the PS

Barry+ 2022

Can we learn something from upper limits that are still x10-100 above the expected signal?

Currently only upper limits on the PS

Application to HERA (HERA collaboration 2022ab).

For similar studies on LOFAR and MWA data see (Ghara+2020; Mondal+2020; Greig+2020, Greig+2021)

Recent results from HERA

An initial observing campaign in 2017-18, with just 39/~350 antennas and 18 nights (2108.02263).

HERA collaboration (2022a)

Interpreting recent results from HERA

What kind of models are the easiest to rule out (i.e. have the largest power)?

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d}\mathsf{v}_{r}/\mathsf{d}\mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10}\frac{0.15}{\Omega_{\mathrm{M}}\mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b}\mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$

What kind of models are the easiest to rule out (i.e. have the largest power)?

$$\delta \mathsf{T}_{b}(\nu) \approx 2 (\mathsf{x}_{\mathrm{HI}} 1 + \delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d} \mathsf{v}_{r}/\mathsf{d} \mathsf{r} + \mathsf{H}} \right) \left(1 - \frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}} \right) \left(\frac{1 + \mathsf{z}}{10} \frac{0.15}{\Omega_{\mathrm{M}} \mathsf{h}^{2}} \right)^{1/2} \left(\frac{\Omega_{b} \mathsf{h}^{2}}{0.023} \right) \mathrm{mK}$$
$$\sim \mathbf{0} - \mathbf{1}$$

What kind of models are the easiest to rule out (i.e. have the largest power)?

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}} (1 + \delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d} \mathsf{v}_{r}/\mathsf{d} \mathsf{r} + \mathsf{H}} \right) \left(1 - \frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}} \right) \left(\frac{1 + \mathsf{z}}{10} \frac{0.15}{\Omega_{\mathrm{M}} \mathsf{h}^{2}} \right)^{1/2} \left(\frac{\Omega_{b} \mathsf{h}^{2}}{0.023} \right) \mathrm{mK}$$

~ 0.1 - 1
$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d} \mathsf{v}_{r}/\mathsf{d} \mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10} \frac{0.15}{\Omega_{\mathrm{M}} \mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b} \mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$
$$\sim -10(!) - 1$$

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d}\mathsf{v}_{r}/\mathsf{d}\mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10}\frac{0.15}{\Omega_{\mathrm{M}}\mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b}\mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$

Models that are ruled out must have:

COLD IGM: $T_{\rm S} \ll T_{\gamma}$

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d} \mathsf{v}_{r}/\mathsf{d} \mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10}\frac{0.15}{\Omega_{\mathrm{M}}\mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b}\mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$

Models that are ruled out must have:

COLD IGM: $T_{\rm S} \ll T_{\gamma}$

Spatial fluctuations in either:

• ionization fraction (patchy EoR)

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d} \mathsf{v}_{r}/\mathsf{d} \mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10}\frac{0.15}{\Omega_{\mathrm{M}}\mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b}\mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$

Models that are ruled out must have:

COLD IGM: $T_{\rm S} \ll T_{\gamma}$

Spatial fluctuations in either:

- ionization fraction (patchy EoR)
- matter density

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d}\mathsf{v}_{r}/\mathsf{d}\mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10}\frac{0.15}{\Omega_{\mathrm{M}}\mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b}\mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$

Models that are ruled out must have:

COLD IGM: $T_{\rm S} \ll T_{\gamma}$

Spatial fluctuations in either:

- ionization fraction (patchy EoR)
- matter density
- temperature (requires extremely soft SEDs)

see also e.g. Ewall-Wice+2013; Ghara+2020; Greig+2020; Mondal+2020; Reis+2020; Greig+2021

Examples

HERA collaboration (2021)

Current constraints on EoR history

Current constraints on EoR history

Constraints on IGM properties

Cold IGM disfavored by HERA

Extra-radio background

$$\delta \mathsf{T}_{b}(\nu) \approx 27 \mathsf{x}_{\mathrm{HI}}(1+\delta_{\mathrm{nl}}) \left(\frac{\mathsf{H}}{\mathsf{d}\mathsf{v}_{r}/\mathsf{d}\mathsf{r}+\mathsf{H}}\right) \left(1-\frac{\mathsf{T}_{\gamma}}{\mathsf{T}_{\mathrm{S}}}\right) \left(\frac{1+\mathsf{z}}{10}\frac{0.15}{\Omega_{\mathrm{M}}\mathsf{h}^{2}}\right)^{1/2} \left(\frac{\Omega_{b}\mathsf{h}^{2}}{0.023}\right) \mathrm{mK}$$

If there is a radio background in excess of the CMB, signal can be larger!

Extra-radio background

Four independent analysis roughly agree on temperature constraints

led by Julian Munoz

led by Jordan Mirocha

led by Yuxiang Qin

led by Stefan Heimersheim

pure adiabatic cooling is ruled out!!

What about galaxy properties?

X-ray luminosity per unit SFR

HERA is the first observation to constrain the X-ray luminosities of Cosmic Dawn galaxies (e.g., Fragos+13), disfavoring the values seen in local, metal-enriched galaxies

The HERA collaboration (2022a; led by N. Kern)

X-ray luminosity per unit SFR

metal-enriched galaxies

Is this surprising?

The Lx-SFR scaling of HMXBs depends on metallicity

Saxoni+ (2022)

Metallicity evolves with galaxy mass

Ucci+ (2021)

The 21-cm signal probes a new regime for HMXBs - ultra low mass, low metalicity

Kaur, Qin, AM+ (2022)

The 21-cm signal probes a new regime for HMXBs: *low mass galaxies + low metalicity*

Kaur, Qin, AM+ (2022)

The 21-cm signal probes a new regime for HMXBs: *low mass galaxies + low metalicity*

Kaur, Qin, AM+ (2022)

Milestones aka "The path to the 21-cm revolution"

Upper limits on the 21-cm power spectrum

Upper limits on the 21-cm power spectrum

 understand systematics! can we parametrize / sample our uncertainties?

Upper limits on the 21-cm power spectrum

- understand systematics! can we parametrize / sample our uncertainties?
- do we have all of the *physics* we need, especially regarding heating sources?

Including a contribution from even earlier, molecularly-cooled galaxies (MCGs)?

Constraints from HERA can weaken, though results depend strongly on priors

Upper limits on the 21-cm power spectrum

- understand systematics! can we parametrize / sample our uncertainties?
- do we have all of the **physics** we need, especially regarding heating sources?
- posteriors will be prior-dominated UNLESS we have "realistic" galaxy models that can be constrained by other observations

Contribution of different data

Redshift

Upper limits on the 21-cm power spectrum

- understand systematics! can we parametrize / sample our uncertainties?
- do we have all of the **physics** we need, especially regarding heating sources?
- posteriors will be **prior-dominated** UNLESS we have "realistic" galaxy models that can be constrained by other observations
- emulators are useful! error is currently sub-dominant

(e.g. Kern+2017; Schmit & Pritchard 2017; Shimabukuro & Semelin 2017; Jennings+2019; Ghara+2020; Mondal+2022; Bye+2022a; Lazare+2023; Breitman+2023)

see talk by D. Breitman!

Where we will be soon Low S/N detection of the 21-cm PS

Where we will be soon

Low S/N detection of the 21-cm PS

 understand systematics! can we parametrize / sample our uncertainties?

Where we will be soon

Low S/N detection of the 21-cm PS

- understand systematics! can we parametrize / sample our uncertainties?
- how can we convince ourselves and everyone else that the detection is REAL —> cross-correlation with signal of known cosmic origin

The importance of cross-correlations

- It is an important sanity check to verify claims of detection/analysis pipeline
- improves S/N for preliminary detections (systematics and noise are uncorrelated in cross)
- with images, it lets us study individual HII (or heated) regions, comparing them to their host galaxy properties

Moriwaki+2019

The importance of cross-correlations

- It is an important sanity check to verify claims of detection/analysis pipeline
- improves S/N for preliminary detections (systematics and noise are uncorrelated in cross)
- with images, it lets us study individual HII (or heated) regions, comparing them to their host galaxy properties

Moriwaki+2019

see talk by S. Gagnon-Hartman
Signals to cross with 21cm during EoR/CD

- 1. **Cosmic Backgrounds** (difficult to get good S/N because signal integrates over redshift)
 - (i) CMB (e.g. kSZ with SPT/ACT/SO; e.g. Ma+2018; LaPlante+2022)
 - (ii) NIR (e.g. CIBERII Mao 2014)
 - (iii) XRB (Athena) e.g. Ma+2018
- 2. Resolved **Galaxies** (need wide and deep, and redshifts to better than percent precision-> grism or multi-object spectroscopy)
 - (i) ROMAN grism (e.g. Vrbanec+2020; LaPlante+2023)
 - (ii) SUBARU narrow-band (e.g. Sobacchi+ 2016; Vrbanec+2020; Hutter+2017; Kubota+ 2020; Heneka & Mesinger 2020);
 - (iii) SUBARU spectroscopy with PFS
 - (iv) ELT spectroscopy
- 3. Intensity mapping (best footprint overlap; signal is generally faint at z>6)
 - (i) Lya SPHEREx (e.g. Heneka & Cooray 2021) CDIM (Cooray+2016)
 - (ii) OIII SPHEREx (Kana+ 2019; Moriwaki+2019; Schengqi+2021)
 - (iii) CII CONCERTO (Lagache+2017), TIME-Pilot (Crites+2014), CCAT-prime (Parshley+2018)

High S/N map of ~50% of the observable Universe

22

adapted from C. Chiang

The Square Kilometer Array is coming Timing of major science milestones

Milestone event (earliest)		SKA-Mid (end date)	SKA-Low (end date)	-	
AA0.5	4 dishes 6 stations	2024 Dec	2024 Aug		 Pre science Verification SRCs not needed to support commissioning Opportunity for testing (data, transfer, access, pipelines)! Science Verification Data immediately public Full dress rehearsal! Some SRCNet resources for analysis would be an advantag Observed as trickle but also in dedicated blocks
AA1	8 dishes 18 stations	2025 Nov	2025 Oct		
AA2	64 dishes 64 stations	2026 Oct	2026 Sep		
AA*	144 dishes 307 stations	2027 Aug	2028 Jan		
Operations Readiness Review		2027 Nov	2028 Apr		Curde 0
End of staged delivery programme		2028 Jul	2028 Jul		- "Proper" shared risk projects
AA4	197 dishes 512 stations	ТВО	ТВО		 Teams, proprietary periods, visualisation, ADP creation etc

*Data product rollout is somewhat predictable in the earlier periods (follows a rollout plan) - could become useful for planning.

Slide / 8

slide courtesy R. Braun

Where we shind be >2030-2040

High S/N map with the SKA

• optimal compression of **non-Gaussian** signal (e.g. bispectrum, Minkowski functionals, wavelets, data-driven compression...)

e.g. Watkinson+2017 (see also, e.g. Majumdan+2020; Chen+2019; Giri&Mellema2021; Kamran+2023..)

High S/N map with the SKA

- optimal compression of non-Gaussian signal (e.g. bispectrum, Minkowski functionals, wavelets, data-driven compression...)
- do we actually know the likelihood analytically? —> Simulation Based Inference (SBI)

Simulation Based Inference (SBI)

Precompute database of forward models (varying cosmic ICs, noise, etc.) and *train density estimators* to fit the likelihood.

High S/N map with the SKA

- optimal compression of non-Gaussian signal (e.g. bispectrum, Minkowski functionals, wavelets, data-driven compression...)
- do we actually know the likelihood analytically? —>
 Simulation Based Inference (SBI)
- emulating maps

High S/N map with the SKA

- optimal compression of non-Gaussian signal (e.g. bispectrum, Minkowski functionals, wavelets, data-driven compression...)
- do we actually know the likelihood analytically? —> Simulation Based Inference (SBI)
- emulating maps
- how well do we trust our simulators (analytic, semi-numeric, moment-based RT, ray tracing, hydro...)??
 AM+ (2011)

Conclusions

- The cosmic 21cm signal will allow us to learn the average UV and Xray properties of the first galaxies as well physical cosmology.
- There are current claims of a detection/non-detection of the **global signal**.
- Upper limits on the 21-cm power spectrum by LOFAR, MWA and HERA imply some heating of the IGM by z>10.
- If heating is provided by high mass X-ray binary stars, they are likely more luminous then local ones, likely due to their low-metallicities.
- Future detections will need **cross-correlations** with signals of known origin in order to be believed.
- High S/N maps of half of our observable Universe should be enabled by the SKA over the next couple of decades, ushering in a Big Data revolution