Optical Emission-Line Predictions for the Euclid Wide and Deep Surveys Using Galaxy Populations in GAEA

Lucie Scharré, Michaela Hirschmann, Gabriella de Lucia

The Euclid Wide and Deep Surveys

Wide Survey (EWS)

- 15 000deg²
- Mag < 24
- Primiarily census in Hα

Deep Survey (EDS)

- 50 deg²
- Mag < 26
- Many emission lines

Hundreds of millions of spectra out to z ~ 2.5!

- 15 000deg²
- Very interesting for galaxy evolution
 - Optical ELs: Hα, Hβ, [NII]λ4584,
 Surv[OIII]λ5007,...
- 50 deg²
- Mage Spectroscopic diagnostics
- Many emission lines

Spectroscopic Diagnostics

Most are only calibrated for the local Universe

 \Rightarrow Unclear if they can be extended to z > 0

BPT diagrams

e.g. Harikane et al. (2023), Hirschmann et al. (2019, 2022)

Metallicity calibrations to EL ratios

e.g. Curti et al. (2022). Sanders et al. (2023). Hirschmann et al. (2023)

Spectroscopic Diagnostics

Most are only calibrated for the local Universe

 \Rightarrow Unclear if they can be extended to z > 0

⇒ Need theoretical guidance to ensure spectral diagnostics can be used to characterise galaxies observed by Euclid!

00

Theoretical Framework

Euclid-like light cone from GAEA

1D CLOUDY photoionisation models

+

- Young stars (Gutkin et al. 2016)
- AGN (Feltre et al. 2016)
- PAGB stars (Hirschmann et al. 2017)

 \Rightarrow Self-consistent prediction of emission lines

Zoldan et al. (2015)

Theoretical Framework

Euclid-like light cone from GAEA

+

1D CLOUDY photoionisation models

- Young stars (Gutkin et al. 2016)
- AGN (Feltre et al. 2016)
- PAGB stars (Hirschmann et al. 2017)

 \Rightarrow Self-consistent prediction of emission lines

Key Questions

- 1. How are galaxy populations biased when requiring the detectability of emission lines with Euclid?
- 2. Can optical BPT diagrams distinguish between dominant ionising sources in the EDS-observable sample?

3. Which EL calibrations can characterise galaxies at intermediate redshifts?

Key Questions

1. How are galaxy populations biased when requiring the detectability of emission lines with Euclid?

2. Can optical BPT diagrams distinguish between dominant ionising sources in the EDS-observable sample?

3. Which EL calibrations can characterise galaxies at intermediate redshifts?

Standard Scaling Relations Traced by Emission Lines

Observable Fractions of Line-Emitting SF and Active Galaxies

Observable Fractions of the Emitting SF and Adults Galaxies

Key Questions

1. How are galaxy populations biased when requiring the detectability of emission lines with Euclid?

2. Can optical BPT diagrams distinguish between dominant ionising sources in the EDS-observable sample?

3. Which EL calibrations can characterise galaxies at intermediate redshifts?

[NII]-BPT Diagram Separates Dominant Ionising Sources

Key Questions

1. How are galaxy populations biased when requiring the detectability of emission lines with Euclid?

2. Can optical BPT diagrams distinguish between dominant ionising sources in the EDS-observable sample?

3. Which EL calibrations can characterise galaxies at intermediate redshifts?

Hα and [OIII]-SFR Relations for SF Galaxies

[NII]/H α Depends Strongly on BHAR/SFR!

New [NII]-Based Line-Ratio Calibrations for BHAR/SFR

Line-Ratio Calibrations for the Metallicity

Line-Ratio Calibrations for the Metallicity

Summary

Spectral libraries from Euclid will be **biased toward massive**, highly star-foming and metal-rich galaxies.

The standard **BPT diagram can successfully identify ionising sources** in EDS-like galaxies.

H α and [OIII]-based relations for SFR and LAGN are robust with increasing z.

Based on its [NII]-dependence, we derived **novel**, *z*-invariant, line-ratio calibrations for **the BHAR/SFR**, which are valid for all galaxy types.

Line-ratio calibrations for the gas-phase metallicity undergo shifts in normalisation of up to 1.5 dex in between z = 0 and $z = 2.5 \Rightarrow$ agreement with recent JWST results!

Potential Future Projects

Directly related to GAEA:

- Clustering of EL galaxies (Euclid light cones)
- Origin of extreme EL galaxies found with JWST (GAEA applied to P-Millennium)
- Link between FIR and optical/UV emission lines (ALMA and JWST) via new photo-ionisation models (under construction with A Plat and S Charlot)

Indirectly related to GAEA:

- Improvement of emission-line modelling based on detailed simulations (may lead to reduction of assumptions when modelling line emission for GAEA)
- Impact of LyC photons on EL diagnostics (ionising sources+gas properties) at the reionisation epoch via new coupling and new density-bounded photoionisation models (under construction, with A Plat and S Charlot)
- Impact of binary stellar populations on line emission in simulated galaxies (with S Charlot)