Quenching and morphological evolution of galaxies at $z \approx 3$

Peter Lustig

Disk Dominated Galaxy

Bulge Dominated Galaxy

How can star-formation be suppressed?

Man, Belli 2018

Colors of Star-Forming and Quiescent Galaxies

Younger Stellar populations are bluer

Photometric Classification of Galaxies

UVJ rest-frame colors are routinely used to classify star-forming and quiescent galaxies photometrically.

Sérsic Profile

Projected Axis Ratio

 $q = \frac{a}{b}$

The Mass-Size Relation

Are the most massive quiescent galaxies at high redshift larger than extrapolated from previous mass-size relation determinations?

Broad Structural Properties

Difficulties at high redshift

Quiescent galaxies are rare at high redshift

The photometric classification is uncertain. Spectroscopy is more accurate, but expensive.

HST Follow-up Observations

Photometric selection of bright $z \approx 3$ quiescent galaxy candidates for targeted HST follow-up observations

GRISM + WFC3 ($\approx 4000 \text{ Å Restframe}$)

Stellar Population Properties

Quiescence is confirmed for all 10 targets.

Spectroscopic redshifts are 2.4 < z < 3.2.

Spectro-photometric modeling reveals young ages (median 0.5 Gyr).

The sample is very massive with M $_{\star} \gtrsim 10^{11} \, \mathrm{M}_{\odot}$.

Broad Structural Properties

High fraction of bulge-dominated systems

Broad Structural Properties

High fraction of bulge-dominated systems

Median Sérsic index is similar to lowerredshift massive quiescent samples

Size Evolution

Average massive quiescent galaxy sizes decrease by $\approx 1 \text{ mag since } z \approx 3$

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **501**, 2659–2676 (2021) Advance Access publication 2020 December 5 doi:10.1093/mnras/staa3766

Compact, bulge-dominated structures of spectroscopically confirmed quiescent galaxies at $z \approx 3$

First homogeneous morphological analysis of 10spectroscopically confirmed massive, quiescent galaxies at $z \approx 3$.

Large bulge dominated fraction already at $z \approx 3$.

Sizes are consistent with size evolution by nearly an order of magnitude since $z \approx 3$.

Comparison with Simulation Predictions at $z \approx 2.7$

Hydrodynamical Simulations

Seminanalytical Model

	Magneticum 3	IllustrisTNG 300	GAEA
Volume [Mpc ³]	182	303	685
Galaxies	166	993	9339

Simulated Quiescent Galaxies at $z \approx 3$

Stellar Ages

Star Formation Histories

Observed star-formation starts later and stops faster.

Estimating ages of simulated galaxies with observational methods produces younger ages

 \Rightarrow observational bias likely contributes to tension between observed and simulated ages

Photometric Selection of Quiescent Galaxies

lesc

fractic

Standard UVJ selection yields incomplete and contaminated quiescent samples at high redshift.

Morphological Properties

The observed mass-size relation is not well reproduced

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **518**, 5953–5975 (2023) Advance Access publication 2022 November 28 https://doi.org/10.1093/mnras/stac3450

Massive quiescent galaxies at $z \sim 3$: A comparison of selection, stellar population, and structural properties with simulation predictions

Quiescent fractions in Magneticum and GAEA are in good agreement with observations, and a bit higher in IllustrisTNG

At high redshift standard photometric **selection criteria** lead to **incomplete and contaminated quiescent samples**: bias in characterisation

Mismatch between star formation histories in simulations and observations: observational estimates appear biased towards younger ages and shorter quenching timescales

Definition of Rejuvenation

Rejuvenation: the Role of Mergers

