An Introduction to AGNs and IMF in GAEA

Fabio Fontanot

Trieste 05/06/23

AGN accretion

BRIGHT QUASAR-MODE

Triggering of Galactic Winds Quenching of Star Formation

Jet Development

RADIO-MODE

Quenching of Cooling Flows

Different regimes

- "Radio"-mode
- Low-accretion
- Development of radio jets
- Keep massive galaxies red
- Hot Haloes
 - Dry Mergers?
- LargeScales (DMH)
- Long
 - Steady state accretion rate or cyclic <u>behaviour</u>?
- Regulates stellar mass

- "Quasar"-mode
- High-accretion
- Bright-phase
- From blue to red
- Galaxy Mergers
 - Secular processes?
- Small Scales (~kpc)
 - Triggering galactic winds?
- Rapid
- Regulates BH mass

INFLOW: from the cold gas component to the accretion disc

ACCRETION: from the accretion disc to the central SMBH

> OUTFLOW: of cold gas to the reheated/ejected component

Søy 2 Credits: Padovani & Hurry 1995

dia Loud

Radio Quiet QSO

Sey 1

BIRG

NLRG

Prescriptions

- INFLOW (driven by mergers and DIs)
 - SFR-driven (Granato+04)
 - Analytic model + Simulations (Hopkins & Quaetert 11)
- ACCRETION
 - Viscous timescale (Umemura+00)
 - Light curve model (Hopkins+07)
- OUTFLOW
 - Empirical model (Fiore+17)
 - Analytical model (Menci+19)

Other important aspects to remember:

1) TRIGGERS: mergers and disc instabilities

2) Rad. Efficiency 15%

3) Ed. limit: L/L_{edd} = 10

4) BH seeding: 10³ - 10⁵ Msun

Variable IMF

Universal IMF?

Variable IMF: Observations (dynamical)

Variable IMF: Observations (Spectroscopic)

Variable IMF 1

 IGIMF = Integrated Galaxy-wide IMF WeidnerKroupa03 Weidner+13

Based on a limited number of axyoms

- 2. High-mass end evolution $\rightarrow \alpha_3 = \begin{cases} 2.35 & \rho_{cl} < 9.5 \times 10^4 M_{\odot}/pc^3 \\ 1.86 0.43 \log(\frac{\rho_{cl}}{10^4}) & \rho_{cl} \ge 9.5 \times 10^4 M_{\odot}/pc^3 \end{cases}$
- 3. MC core density
- 4. MC-MF
- 6. Maximum MC mass -
- 7. Maximum stellar mass -

 $\log \rho_{\rm cl} = 0.61 \log M_{\rm cl} + 2.85$ $\varphi_{\rm CL}(M_{\rm cl}) \propto M_{\rm cl}^{-\beta},$ **5. Power law index** $\beta = \begin{cases} 2 & SFR < 1M_{\odot}/yr \\ -1.06 \log SFR + 2 & SFR \ge 1M_{\odot}/yr \end{cases}$

→ $\log M_{\rm cl}^{\rm max} = 0.746 \log SFR + 4.93.$

 $\log m_{\star}^{\max} = 2.56 \log M_{\rm cl} \times [3.82^{9.17} + (\log M_{\rm cl})^{9.17}]^{1/9.17} - 0.38.$

Estimate of IGIMF as a function of SFR

 $\varphi_{\rm IGIMF}(m) = \int_{M_{\rm cl}^{\rm min}}^{M_{\rm cl}^{\rm max}} \varphi_{\star}(m \leqslant m_{\star}^{\rm max}(M_{\rm cl}))\varphi_{\rm CL}(M_{\rm cl})dM_{\rm cl}$

Variable IMF 2

Variable IMF prescription has been implemented into the GAlaxy Evolution and Assembly (GAEA) semi-analytic code

Strategy

Variable IMF prescription has been implemented into the GAlaxy Evolution and Assembly (GAEA) semi-analytic code

Intrinsic properties cannot be compared directly with observational estimates

Strategy

Variable IMF prescription has been implemented into the GAlaxy Evolution and Assembly (GAEA) semi-analytic code

Intrinsic properties cannot be compared directly with observational estimates

We derive self-consistent synthetic photometry to compare
Intrinsic Galaxy Properties

Strategy

Variable IMF prescription has been implemented into the GAlaxy Evolution and Assembly (GAEA) semi-analytic code

Intrinsic properties cannot be compared directly with observational estimates

We derive self-consistent synthetic photometry to compare

Intrinsic Galaxy Properties

Photometrically derived Galaxy Properties ("What an observer would estimated from synthetic photometry assuming universal IMF")

Intrinsic properties cannot be compared directly with observational estimates

Variable IMF: Observations (Spectroscopy again)

MUSE reconstructed image

Dwarf-to-giant ratio

Conclusions

Variable IMF prescriptions in SAMs are a tool to interpret dynamical & spectral deviations from universal IMF

Easy way to test (different) IMF variability as a function of galaxy physical properties and/or redshift

Dual IMF deviations from MW-like at the high- & low-mass end are required to explain at the same time the chemical, dynamical and spectroscopic observations Fontanot+18

Intrinsic Galaxy Properties might be drastically different from photometrically estimated values