Exoplanets in star clusters

(associations & moving groups)

Nardiello Domenico

PLATO Science in Italy Workshop: ready to PLATO data exploitation? INAF Catania - September 27th, 2023

Galactic Field stars ...

...vs. Star Clusters' members

- Coeval stars at same distance and sharing the same chemical properties
- Many (accurate) methods to measure the **age**:
 - theoretical models (e.g. isochrones)
 - empirical approaches (e.g. gyrochronology)
- **Small uncertainties** on the age estimate, but also on stellar parameters (*R*_{*}, *M*_{*}, *T*_{eff}, etc.)

Why should we look for exoplanets in stellar clusters and associations?

- ★ Accurate stellar parameters (radii, masses, temperatures, chemical properties, etc.) result in precise planetary characteristics
- ★ Star clusters allow us to follow the temporal evolution of exoplanets, from the earliest stages of their formation until they become elderly

The <mark>age</mark> of the stars in clusters from light curves

Curtis et al. (2019)

Gyrochronology: not dependent on the distance No an universal calibration for now, only relative comparisons.

Isochrone fitting + Gyrochronology: e.g., useful in the case of very young association for which single methods are inadequate to constrain the age

Nardiello (2020)

See Monday talks!

The age of the stars in clusters from light curves: the example of NGC 2516

Many cluster have already been observed by TESS in several sectors, the difficulties to "stack" the light curves of different sectors limited the P-color analysis to short periods (≤ 10 d).

PLATO's (≥)2yr uninterrupted observations of star clusters will allow longer rotation periods to be measured (especially for old star clusters).

The first discovered transiting exoplanets in an **open cluster**

Stellar properties		Kepler-66	Kepler-67			
Right ascensior	1	19h 35 min 55.57	3s 19h 36 min 36.799s			
Declination		46° 41' 15.906	" 46° 09' 59.181"			
Spectral type		GOV	G9V			
Effective temperature,	Teff (K)	$5,962 \pm 79$	$5,331 \pm 63$			
log[Surface gravity (ci	$ms^{-2})]$	4.484 ± 0.023	4.594 ± 0.022			
Rotation period (da	ays)	9.97 ± 0.16	10.61 ± 0.04			
Mass (solar mass	es)	1.038 ± 0.044	0.865 ± 0.034			
Radius (solar rad	ii)	0.966 ± 0.042	0.778 ± 0.031			
Density (solar)		1.15 ± 0.15	1.89 ± 0.17			
Visual magnitude	,V	15.3	16.4			
Age (billion year	s)	1.00 ± 0.17				
Distance (parsed	:)	1,107 ± 90				
Metallicity, Z		0.012 ± 0.003				
Planetary parameters	Kepler-66b		Kepler-67b			
Orbital period (days)	17.815815 ± 0.000075		15.72590 ± 0.00011			
Impact parameter	0.56 ± 0.26		0.37 ± 0.21			
Time of mid-transit (BJD)	2454967.4854 ± 0.0025		2454966.9855 ± 0.0048			
Planet-to-star radius ratio	0.02646 ± 0.00097		0.03451 ± 0.0013			
Scaled semi-major axis (a/R _{star})		30.3 ± 1.0	32.4 ± 1.1			
Semi-major axis (AU)	0.1	352 ± 0.0017	0.1171 ± 0.0015			
Radius (R _m)		2.80 ± 0.16	2.94 ± 0.16			

Meibom et al. (2013)

DS Tuc A + DS Tuc B + DS Tuc A b

- Binary system formed by G6 + K3 star
 - Members of Tuc-Hor association
- Age = 40 +/- 5 Myr

- Planet orbits DS Tuc A
- Radius = 5.6 R_{Earth}
- Mass < 15 M_{Earth}
- Possible inflated planet

Benatti et al. (2019, 2021)

(see Serena's talk!)

Discovered by TESS

TOI-1807b

- Member of 300+/80 Myr moving group
- The youngest ultra-short period planet (P~13h)
- To date, TOI-1807b is the only young super-Earth with a precise mass determination
- Radius = 1.37+/-0.09 R_{*}
- Mass = 2.57 +/- 0.50 M_{\odot}
- density= 1.04 +/- 0.28 ρ_⊕

Transiting exoplanets with a well constrained age

Object	Cluster/Association	Age	$R_{ m P}$	Reference	Object	Cluster/Association	Age	$R_{\rm P}$	Reference
		(Myr)	(R_{\oplus})				(Myr)	(R_{\oplus})	
K2-33 b	Upp-Sco	$9.3^{+1.1}_{-1.1}$	$5.04^{+0.34}_{-0.37}$	Mann et al. (2016b)	TOI-2076 c	TOI-1807 MG	300^{+80}_{-80}	$3.50^{+0.04}_{-0.04}$	Osborn et al. (2022)
TOI-1227 b	Low Cen Crux OB	11^{+2}_{-2}	$9.6^{+0.8}_{-0.6}$	Mann et al. (2022)	TOI-2076 d	TOI-1807 MG	300^{+80}_{-80}	$3.23^{+0.06}_{-0.06}$	Osborn et al. (2022)
HIP 67522 b	Sco-Cen	17^{+2}_{-2}	$10.07\substack{+0.47 \\ -0.47}$	Rizzuto et al. (2020)	HD 63433 b	UMa	414_{-23}^{+23}	$2.15^{+0.10}_{-0.10}$	Mann et al. (2020)
AU Mic b	AU Mic	22^{+3}_{-3}	$4.07^{+0.17}_{-0.17}$	Martioli et al. (2021)	HD 63433 c	UMa	414^{+23}_{-23}	$2.67^{+0.12}_{-0.12}$	Mann et al. (2020)
AU Mic c	AU Mic	22^{+3}_{-3}	$3.24^{+0.16}_{-0.16}$	Martioli et al. (2021)	K2-95 b	Praesepe	670^{+100}_{-100}	$3.7^{+0.2}_{-0.2}$	Mann et al. (2017)
V 1298 Tau b	Tau	23^{+4}_{-4}	$9.53\substack{+0.32 \\ -0.32}$	Feinstein et al. (2022)	K2-100 b	Praesepe	670^{+100}_{-100}	$3.8^{+0.2}_{-0.2}$	Barragán et al. (2019)
V 1298 Tau c	Tau	23^{+4}_{-4}	$5.05^{+0.14}_{-0.14}$	Feinstein et al. (2022)	K2-101 b	Praesepe	670^{+100}_{-100}	$3.0^{+0.1}_{-0.1}$	Mann et al. (2017)
V 1298 Tau d	Tau	23^{+4}_{-4}	$6.13\substack{+0.28 \\ -0.28}$	Feinstein et al. (2022)	K2-102 b	Praesepe	670^{+100}_{-100}	$1.3\substack{+0.1\\-0.1}$	Mann et al. (2017)
V 1298 Tau e	Tau	23^{+4}_{-4}	$9.94^{+0.39}_{-0.39}$	Feinstein et al. (2022)	K2-103 b	Praesepe	670^{+100}_{-100}	$2.2^{+0.2}_{-0.1}$	Mann et al. (2017)
KOI-7368 b	Cep-Her	36^{+10}_{-8}	$2.22\substack{+0.12\\-0.12}$	Bouma et al. (2022b)	K2-104 b	Praesepe	670^{+100}_{-100}	$1.9^{+0.2}_{-0.1}$	Mann et al. (2017)
KOI-7913 b	Cep-Her	36^{+10}_{-8}	$2.34^{+0.12}_{-0.18}$	Bouma et al. (2022b)	K2-264 b	Praesepe	670^{+100}_{-100}	$2.27^{+0.20}_{-0.16}$	Rizzuto et al. (2018)
Kepler-1627 b	δ Lyr	38^{+6}_{-5}	$3.78\substack{+0.16 \\ -0.16}$	Bouma et al. (2022a)	K2-264 c	Praesepe	670^{+100}_{-100}	$2.77^{+0.20}_{-0.18}$	Rizzuto et al. (2018)
DS TUcA b	Tuc-Hor	40^{+5}_{-5}	$5.63^{+0.22}_{-0.21}$	Benatti et al. (2019)	HD 283869 b	Hyades	730^{+100}_{-100}	$1.96\substack{+0.13 \\ -0.16}$	Vanderburg et al. (2018)
Kepler-1643 b	Cep-Her	46^{+9}_{-7}	$2.32^{+0.14}_{-0.14}$	Bouma et al. (2022b)	K2-25 b	Hyades	730^{+100}_{-100}	$3.43^{+0.95}_{-0.31}$	Mann et al. (2016a)
K2-284 b	Cas-Tau	120^{+640}_{-20}	$2.78^{+0.14}_{-0.12}$	David et al. (2018)	K2-136A b	Hyades	730^{+100}_{-100}	$0.99\substack{+0.06\\-0.04}$	Mann et al. (2018)
TOI-451 b	Psc-Eri	$134_{-6.5}^{+6.5}$	$1.91\substack{+0.12 \\ -0.12}$	Newton et al. (2021)	K2-136A c	Hyades	730^{+100}_{-100}	$2.91^{+0.11}_{-0.10}$	Mann et al. (2018)
TOI-451 c	Psc-Eri	$134_{-6.5}^{+6.5}$	$3.10\substack{+0.13 \\ -0.13}$	Newton et al. (2021)	K2-136A d	Hyades	730^{+100}_{-100}	$1.45\substack{+0.11 \\ -0.08}$	Mann et al. (2018)
TOI-451 d	Psc-Eri	$134_{-6.5}^{+6.5}$	$4.07^{+0.15}_{-0.15}$	Newton et al. (2021)	K-66 b	NGC 6811	863^{+30}_{-30}	$2.80^{+0.16}_{-0.16}$	Meibom et al. (2013)
TOI-1098 b	Melange-1	250^{+50}_{-70}	$3.2\substack{+0.1\\-0.1}$	Tofflemire et al. (2021)	K-67 b	NGC 6811	863^{+30}_{-30}	$2.94^{+0.16}_{-0.16}$	Meibom et al. (2013)
TOI-2076 b	TOI-1807 MG	300^{+80}_{-80}	$2.52^{+0.04}_{-0.04}$	Osborn et al. (2022)	K2-231 b	Ruprecht 147	3000^{+250}_{-250}	$2.5^{+0.2}_{-0.2}$	Curtis et al. (2018)

+ Candidate exoplanets from:

PATHOS project (Nardiello et al. 2019, 2020, 2021, Nardiello 2020)

CDIPS project (Bouma et al. 2019)

. . .

Updated to June 2022

...anyway the number of exoplanets in stellar clusters, associations and moving groups << number of exoplanets around field stars

An example: the PATHOS pipeline for TESS (but also Kepler and GB)

- Light curve extraction recipe: PSF & neighbor subtraction
 Minimization of dilution effects
 - High-precision light curves even for faint stars (7>15)
- Finding, vetting, and modelling of transiting objects

A big obstacle: the crowding

Low resolution of **wide field** cameras:

- even sparse star clusters and associations appear as dense stellar systems
- **contamination** and **dilution** effects due to the neighbors can mimic or falsify signals of planetary transits
- The need for a special data reduction pipeline (DIA, PSF-based approach, etc.)

Frequency of candidate exoplanets in open clusters

$$f_{\star}(R_{\rm P}, P) = \frac{\sum_{i=1}^{N_{\rm cand}} [1 - {\rm FPP}_{\rm c}^{i}(R_{\rm P}, P)]}{\sum_{j=1}^{N_{\rm stars}} [{\rm de}^{j}(R_{\rm P}, P) \times {\rm Pr}_{\rm transit}^{j}(P)]}$$

→ FPP = False Positive Probability (computed with VESPA)

→ de = detection efficiency of planets with radius R_P and orbital period P

→ Pr_{transit} = transit probability of a planet with period P

On	avei	the				
measu	red	and	upper			
limit	frequ	encie	s are			
lower	than	the	values			
reported in literature for						
field stars.						

	$0.85 < R_{\rm P} \le 3.9R_{\rm Earth}$			$3.9 < R_p \le 11.2R_{Earth}$			$1.0 < R_{\rm p} \le 2.5 R_{\rm J}$		
Period	f_{\star}^{\min}	f_{\star}^{mid}	f_{\star}^{\max}	f_{\star}^{\min}	$f_{\star}^{\rm mid}$	f_{\star}^{\max}	f_{\star}^{\min}	$f_{\star}^{\rm mid}$	f_{\star}^{\max}
(d)	(per cent)	(per cent)	(per cent)	(per cent)	(per cent)	(per cent)	(per cent)	(per cent)	(per cent)
0.5-2.0	<0.034	<0.063	<0.086	<0.004	<0.007	<0.009	<0.002	<0.004	<0.006
2.0-10.0	<0.092	<0.191	<0.269	0.034 ± 0.025	0.070 ± 0.052	0.098 ± 0.073	0.023 ± 0.013	0.047 ± 0.027	0.066 ± 0.038
10.0-85.0	<0.533	<1.505	<2.218	<0.327	<0.925	<1.364	0.555 ± 0.336	1.568 ± 0.955	2.312 ± 1.413
85.0-365.0	<2.716	<5.200	<7.174	<2.197	<4.205	<5.806	<2.102	<4.022	<5.553

Kepler - TESS - PLATO **synergy** will help to improve these frequencies.

Nardiello et al. (2021)

Nardiello et al. (2021)

Close-in candidate and confirmed exoplanets

P_{orb} < 100 days & well constrained ages

- Lack of small size (<4 R_{Earth}) young exoplanets (<100 Myr): probable observing bias due to the difficult detection of shallow transits in highly variable light curves
- No planets at ages >100 Myr in the range 4-10 R_{Earth} : unlikely observing bias
- Hint of planetary evolution? (photoevaporation, core-powered mass loss, migration, ...) (see Serena's talk!)

Observations of members of young open clusters, stellar associations and moving groups with PLATO, will be useful for filling the region of young, small planets.

Moreover, PLATO will detect planets with P>100 days, allowing us to study the same relationship for long period planets.

Not only exoplanets

Dippers in young associations (<10 Myr)

Simultaneous (ground-based) observations in another band(s) provide information on the extinction due to the dust in circumstellar disks.

If the dust is dominated by small grains, the quantity A_T/A_g will be smaller than the case in which the grains have large size; if the size of the grains are larger than the wavelengths in which the TESS observations were performed (λ central ~ 800 nm), the ratio $A_T/A_a \rightarrow 1$, and the reddening $E(g-T) = A_a - A_T \rightarrow 0$.

Dippers are important for understanding the early stages of planetary formation and evolution (first <1-10 Myr).

(Nardiello 2020)

