DO THE MAJORITY OF STARS FORM IN GRAVITATIONALLY UNBOUND GROUPS?

František Dinnbier ${ }^{1}$
Pavel Kroupa ${ }^{1,2}$, Richard Anderson ${ }^{3}$

21st November 2023
${ }^{1}$ Astronomical Institute, Charles University in Prague, Czech Republic
${ }_{3}^{2}$ Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
${ }^{3}$ Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Two broad scenarios

Star formation in gravitationally bound embedded clusters

- Star clusters form as gravitationally bound and embedded by their natal gas.
- Massive stars disperse the cloud via photoionising radiation, radiation pressure, stellar winds, ..., which leads to cluster expansion and the loss of a substantial fraction ($\gtrsim 50 \%$) of its stars.
- The dense core revirialises forming an open star cluster while the rest of stars expands forming an unbound OB association (Lada+ 1984, Kroupa+ 2001, Baumgardt \& Kroupa 2007).
- Some massive stars are ejected from the cluster in dynamical encounters (or supernovae), and these stars are observed far away from the cluster as runaway stars (Fujit \& Portegies Zwart 2011, Oh+ 2015, Wang+ 2019).

Star formation in loose OB associations

- Stars form throughout a molecular cloud at various densities. Some stars are clustered but the majority is gravitationally unbound since their formation (Clark+ 2005, Elmegreen+ 2006).
- Young stellar groups expand mostly because they preserve the turbulent motions of their natal clouds.

Evidence for clusters as the main sites of star formation

- The majority of star formation in the Galaxy ($\gtrsim 50 \%$) occurs in dense clusters (Carpenter+ 1995, Lada \& Lada 2003, Bressert+ 2010, Winston+ 2020).
- The binary frequency of solar type stars in embedded clusters is $\gtrsim 0.8$, while it is 0.5 in the field. The decrease of binary frequency can be explained by the cluster environment (Kroupa 1995, Marks \& Kroupa 2011).
- For many of the previously claimed isolated O stars in Magellanic clouds were found accompanying clusters of lower mass stars (Stephens+ 2017), indicating that $\gtrsim 95 \%$ of

YSOs in the Orion A cloud (Megeath+ 2016). O stars form in clusters.

Evidence for distributed star formation

- In contrast, observations of many external galaxies suggest that they form only $\approx 10 \%$ of stars in clusters (Goddard+ 2010, Adamo + 2011, Johnson+ 2016).
- The semi-analytical estimate of Γ as a function of the star formation rate per unit area $\Sigma_{\text {SFR }}\left(\Gamma-\Sigma_{\text {SFR }}\right.$ theory; Kruijssen 2012) predicts that Γ to be a strong function of $\Sigma_{\text {SFR }}$, with $\Gamma \approx 10 \%$ for the Galaxy.
- Another observations (Chandar+ 2017, Fensch+ 2019) suggest higher fraction of stars forming in clusters (≈ 10 to 50%).

Present models

- We identified several questionable points in the Γ - $\Sigma_{\text {SFR }}$ theory (the PDF of the star forming gas; the threshold of SF at $n \gtrsim 10^{4} \mathrm{~cm}^{-3}$; neglecting star cluster dynamics; Dinnbier, F., Kroupa P., Anderson, R. I., 2022, A\&A 660, 61) \rightarrow we assume that all stars form in a population of star clusters ($\Gamma-1$ model).
- The cluster mass range spans the interval from $50 \mathrm{M}_{\odot}$ to $6400 \mathrm{M}_{\odot}$; we extrapolate the results for clusters with mass $>6400 \mathrm{M}_{\odot}$ and down to $5 \mathrm{M}_{\odot}$.
- The models are evolved by the code NBODY6 (Aarseth 2003) for 300 Myr (first 10 Myr are the most relevant).
- We calculate a large set (≈ 2500 simulations) of open star clusters experiencing early gas expulsion (SFE $=1 / 3$), located at different galactocentric radii R_{g} and of different metallicity Z.

The fraction of stars in clusters for a single starburst

The fraction of stars located in clusters as a function of cluster mass and age.

The fraction of stars $f_{\text {IC, pop }}$ located in a whole population of clusters (of initial slope $\beta=-2$) as a function of their galactocentric radii R_{g} and metallicity Z (for clusters with $R_{\mathrm{g}}=8 \mathrm{kpc}$).

The fraction of stars in clusters for a single starburst

The fraction of stars located in clusters for stars of different spectral types.

- The earlier spectral type, the higher the probability of being found in a cluster.
- The exception are O-type stars because of their dynamical interactions producing runaway stars.

Comparison with observations

The fraction of stars located in star clusters of age $\lesssim 10 \mathrm{Myr}$ (blue dots), $10 \mathrm{Myr}<t<100 \mathrm{Myr}$ (green squares) and $100<\mathrm{Myr}<400 \mathrm{Myr}$ (red triangles) (Chandar+ 2017).

- We aim at the Magellanic clouds because they present the largest difference between the observations of Chandar+ 2017 and the $\Gamma-\Sigma_{\text {SFR }}$ relation.
- The data of Chandar+ 2017 are based on Hunter+ 2003, who identify star clusters visually.

Comparison with observations

The fraction of stars located in star clusters of age $\lesssim 10 \mathrm{Myr}$ (blue dots), $10 \mathrm{Myr}<t<100 \mathrm{Myr}$ (green squares) and $100<\mathrm{Myr}<400 \mathrm{Myr}$ (red triangles) (Chandar+ 2017).

- We aim at the Magellanic clouds because they present the largest difference between the observations of Chandar+ 2017 and the $\Gamma-\Sigma_{\text {SFR }}$ relation.
- The data of Chandar+ 2017 are based on Hunter+ 2003, who identify star clusters visually.

Comparison with observations

Cluster identification (initially $3200 \mathrm{M}_{\odot}$ cluster).

- Hunter+ 2003: A star cluster must be distinguished from its background within a circle of radius $r_{\text {search }}=5.5 \mathrm{pc}$.
- We define a cluster as a grouping of at least 10 stars earlier than sp. type F0 which fit in radius $r_{\text {search }}=5 \mathrm{pc}$.
- We experiment also with $r_{\text {search }}=2 \mathrm{pc}$.
- In total: 3840 stars

Comparison with observations

Cluster identification (initially $3200 \mathrm{M}_{\odot}$ cluster).

- Hunter+ 2003: A star cluster must be distinguished from its background within a circle of radius $r_{\text {search }}=5.5 \mathrm{pc}$.
- We define a cluster as a grouping of at least 10 stars earlier than sp. type F0 which fit in radius $r_{\text {search }}=5 \mathrm{pc}$.
- We experiment also with $r_{\text {search }}=2 \mathrm{pc}$.
- In total: 2016 stars

Comparison with observations

Cluster identification (initially $3200 \mathrm{M}_{\odot}$ cluster).

- Hunter+ 2003: A star cluster must be distinguished from its background within a circle of radius $r_{\text {search }}=5.5 \mathrm{pc}$.
- We define a cluster as a grouping of at least 10 stars earlier than sp. type F0 which fit in radius $r_{\text {search }}=5 \mathrm{pc}$.
- We experiment also with $r_{\text {search }}=2 \mathrm{pc}$.
- In total: 163 stars \rightarrow cluster detected.

Comparison with observations

Cluster identification (initially $100 \mathrm{M}_{\odot}$ cluster).

- Hunter+ 2003: A star cluster must be distinguished from its background within a circle of radius $r_{\text {search }}=5.5 \mathrm{pc}$.
- We define a cluster as a grouping of at least 10 stars earlier than sp. type F0 which fit in radius $r_{\text {search }}=5 \mathrm{pc}$.
- We experiment also with $r_{\text {search }}=2 \mathrm{pc}$.
- In total: 128 stars.

Comparison with observations

Cluster identification (initially $100 \mathrm{M}_{\odot}$ cluster).

- Hunter+ 2003: A star cluster must be distinguished from its background within a circle of radius $r_{\text {search }}=5.5 \mathrm{pc}$.
- We define a cluster as a grouping of at least 10 stars earlier than sp. type F0 which fit in radius $r_{\text {search }}=5 \mathrm{pc}$.
- We experiment also with $r_{\text {search }}=2 \mathrm{pc}$.
- In total: 51 stars.

Comparison with observations

Cluster identification (initially $100 \mathrm{M}_{\odot}$ cluster).

- Hunter+ 2003: A star cluster must be distinguished from its background within a circle of radius $r_{\text {search }}=5.5 \mathrm{pc}$.
- We define a cluster as a grouping of at least 10 stars earlier than sp. type F0 which fit in radius $r_{\text {search }}=5 \mathrm{pc}$.
- We experiment also with $r_{\text {search }}=2 \mathrm{pc}$.
- In total: 5 stars \rightarrow cluster is not detected.

Comparison with observations

- The solid line shows the physical fraction of stars located in clusters.
- The shaded area shows the approximate fraction of stars to be observed in clusters.
- The observed fraction of stars in clusters $f_{\text {IC }}^{\text {obs }}$ pop is typically by a factor of 2 lower than $f_{\mathrm{IC}, \text { pop }}$.
- 「 is equivalent to the observed fraction of stars in clusters $\bar{f}_{\mathrm{IC}, \text { pop }}^{\mathrm{obs}}(t<10 \mathrm{Myr})$.

The estimated fraction of stars to be located in clusters

The estimated fraction of stars to be located in clusters

The estimated fraction of stars to be located in clusters

- We assume constant star forming rate.
- The dashed lines are estimates of NBODY6 simulations for $r_{\text {search }}=2 \mathrm{pc}$ and 5 pc , respectively.
- The shaded area represents the variation of $\beta=-1.8$ to $\beta=-2.2$ as suggested from the IGIMF theory (Weidner+2004, Jerabkova+ 2018).
- For the youngest clusters ($t \lesssim 10 \mathrm{Myr}$), they agree with observations better than the $\Gamma-\Sigma_{\text {SFR }}$ theory.

The estimated fraction of stars to be located in clusters

- We assume constant star forming rate.
- The dashed lines are estimates of NBODY6 simulations for $r_{\text {search }}=2 \mathrm{pc}$ and 5 pc , respectively.
- The shaded area represents the variation of $\beta=-1.8$ to $\beta=-2.2$ as suggested from the IGIMF theory (Weidner+2004, Jerabkova+ 2018).
- For the youngest clusters $(t \lesssim 10 \mathrm{Myr})$, they agree with observations better than the $\Gamma-\Sigma_{\mathrm{SFR}}$ theory.

The estimated fraction of stars to be located in clusters

- We assume constant star forming rate.
- The dashed lines are estimates of NBODY6 simulations for $r_{\text {search }}=2 \mathrm{pc}$ and 5 pc , respectively.
- The shaded area represents the variation of $\beta=-1.8$ to $\beta=-2.2$ as suggested from the IGIMF theory (Weidner+2004, Jerabkova+ 2018).
- For the youngest clusters ($t \lesssim 10 \mathrm{Myr}$), they agree with observations better than the $\Gamma-\Sigma_{\text {SFR }}$ theory.
- Older clusters have less stars observed than predicted. This was reported in previous studies of cluster dispersal (Lamers+ 2005). Possible explanation is increased destruction in encounters with molecular clouds (Gielles+ 2006, Jerabkova+ 2021).

Summary

- We assume that all stars form in gravitationally bound embedded star clusters, which experience gas expulsion, and then lose stars due to their internal dynamics.
- The estimated fraction of stars which is supposed to be observed in clusters for this model agrees with observations better than the $\Gamma-\Sigma_{\text {SFR }}$ theory.
- The present scenario leads to a weaker dependence of Γ on Σ_{SFR} than the $\Gamma-\Sigma_{\text {SFR }}$ theory; the dependence is due to the fact that low $\Sigma_{\text {SFR }}$ preferentially form lower mass clusters, which disperse fast.
- For more details, see Dinnbier, F., Kroupa P., Anderson, R. I., 2022, A\&A 660, 61

Thank you for your attention

