Simulating the population of young massive stellar clusters in the Milky Way

Stefano Menchiari (INAF-OAA) Giovanni Morlino (INAF-OAA) Elena Amato (INAF-OAA) Niccolò Bucciantini (INAF-OAA) Germano Sacco (INAF-OAA)

From star clusters to field populations: survived, destroyed and migrated clusters Florence – 22/11/2023

Young massive star clusters: Cosmic rays accelerators and y-ray sources

Young (<10 Myr) massive (>10³ M_☉) stellar clusters (YMSCs) are cosmic ray factories

γ-ray emission detected in coincidence with **<u>12 YMSC!</u>**

		<i></i>	D	Ago	I
Name	$\log M/M_{\odot}$		D	Age	L_w
		[pc]	[kpc]	[Myr]	[erg s ⁻¹]
Westerlund 1	4.6 ± 0.045	1.5	4	4 - 6	10
Westerlund 2	4.56 ± 0.035	1.1	2.8 ± 0.4	1.5 - 2.5	2
Cygnus OB2	4.7 ± 0.3	5.2	1.4	2 - 7	2
NGC 3603	4.1 ± 0.1	1.1	6.9	2 - 3	-
BDS 2003	4.39	0.2	4	1	-
W40	2.5	0.44	0.44	1.5	-
RSGC 1	4.48	1.5	6.6	10 - 14	-
MC 20	~ 3	1.3	3.8 - 5.1	3 - 8	~ 4
NGC 6618	-	3.3	~ 2	< 3	-
30 Dor (LMC)	4.8 - 5.7	multiple	50	1	
NGC 2070 / RCM 136	4.34 - 5	subcluster	50	5	-

Yang and Aharonian (2017)

cerni-AT residual

HII column density (Plank FF)

10.00 0

Right ascension

11:00:00.0 10:50:00.0

NGC 3603

40:00.0

30:00.0

20:00.0

60:00:00

Declination

Galactic Longitude (deg)

Background image credit: NASA/JPL-Caltech

Diffuse γ-ray emission

The γ-ray emission is diffuse and extended (1°-3°)!

Emission size consistent with projected dimension of wind-blown bubbles

Detecting and analyzing diffuse γ-ray emission is a challenging task! Detection bias for low surface brightness sources

Work motivation

Detection of individual YMSCs is challenging...

Collective emission from YMSCs could be detected as a non-resolved contribution to diffuse galactic gamma-ray emission!

To estimate this contribution the knowledge of YMSCs population is required

Population of YMSCs only know locally...

Simulation of a synthetic population!

Diffuse emission = CRs sea + <u>unresolved sources</u>

Work objective

Cosmic rays are accelerated thanks to winds from massive stars and supernova explosions (Morlino's talk)

Gamma-ray emission traces extension of wind-blown bubbles

What do we need?

- Wind luminosity and mass loss rate of stellar winds
- Number of supernovae and Wolf-Rayet stars
- Structure of the wind blown bubble

Workflow

a) Modeling stellar population in a YMSC

b) Modeling stellar wind physics: Use pure empirical approach

Generate galactic population of YMSCs:

Use info from local population of YMSCs

Modeling stellar population and wind physics

Stellar population in YMSC

Stars are spawned by random sampling the initial mass function (IMF) (Kroupa 2001)
 Number of stars in a cluster of mass M_{sc} is that

 $M_{SC} = \langle N_{\star}(M_{SC}) \frac{\int_{M_{\star,min}}^{M_{\star,max}} M_{\star} f_{\star}(M_{\star}) dM_{\star}}{\int_{M_{\star,min}}^{M_{\star,max}} f_{\star}(M_{\star}) dM_{\star}} \rangle$

- Two possible cases for maximum stellar mass:
 - \circ Constant (150 M_{\odot})
 - Function of the cluster mass (Weidner et al 2010)
- Label WR and supernovae according to cluster age and turn over time (Buzzoni et al 2002):
 - o If $t_{age} > \tau_{to}$: Main sequence star
 - If $\tau_{to} < t_{age} < \tau_{to} + 0.3$ Myr and $M_{\star} > 25$ M_{\odot} : WR star (Celli et al 2023)
 - If $t_{age} > \tau_{to} + 0,3$ Myr: Supernova (removed)

Stellar parameters (MLR)

Stellar parameters calculated using empirical relations

- Mass-luminosity relation (MLR) (Menchiari 2023 for MS stars)
- Mass-radius relation (MRR) (Demicran 1991)
- Mass-temperature relation (MTR) (Boltzmann-law)

$$L_{\star} = \begin{cases} L_{b1} \left(\frac{M_{\star}}{7M_{\odot}}\right)^{\alpha_{1}} \left[\frac{1}{2} + \frac{1}{2} \left(\frac{M_{\star}}{7M_{\odot}}\right)^{1/\Delta_{1}}\right]^{(-\alpha_{1}+\alpha_{2})\Delta_{1}} & 10^{7} \\ \text{for } 2.4 \leq \frac{M_{\star}}{M_{\odot}} < 12 \\ \\ \mathcal{K} L_{b2} \left(\frac{M_{\star}}{36M_{\odot}}\right)^{\alpha_{2}} \left[\frac{1}{2} + \frac{1}{2} \left(\frac{M_{\star}}{36M_{\odot}}\right)^{1/\Delta_{2}}\right]^{(-\alpha_{2}+\alpha_{3})\Delta_{2}} & \\ \text{for } M_{\star} \geq 12 \text{ M}_{\odot} & \\ \text{for } M_{\star} \geq 12 \text{ M}_{\odot} & \\ \\ \text{for } WR \text{ stars we adopt Schaerer & Maeder (1992):} \\ \log \frac{L}{L_{\odot}} = 3.0321 + 2.695 \log \frac{M}{M_{\odot}} - \left(\log \frac{M}{M_{\odot}}\right)^{2} & 10^{1} & 10^{2} \end{cases} \\ 10^{7} & \frac{10^{7}}{10^{1}} & \frac{10^{7}}{10^{2}} & \\ 10^{7} & \frac{10^{7}}{10^{1}} & \frac{10^{7}}{10^{2}} & \\ 10^{7} & \frac{10^{7}}{10^{1}} & \frac{10^{7}}{10^{2}} & \\ \frac{10^{7}}{10^{1}} & \frac{10^{7}}{10^{1}} & \\ \frac{10^{7}}{10^{1}} & \\ \frac{10^{7}}{10^{1}} & \\ \frac{10^{7}}{10^{1}} & \frac{10^{7}}{10^{1}} & \\ \frac{10^{7}}{10^{1}} & \\ \frac{10^{7}}{10^$$

NB: for WRs the mass loss is taken into account!

 M_{\star} [M_{\odot}]

Stellar parameters (MRR-MTR)

Stellar parameters calculated using empirical relations

- Mass-luminosity relation (MLR) (Menchiari 2023 for MS stars)
- Mass-radius relation (MRR) (Demicran 1991)
- <u>Mass-temperature relation</u> (MTR) (Boltzmann-law)

$$R_{\star} = 0.85 \left(\frac{M_{\star}}{M_{\odot}}\right)^{0.67} R_{\odot}$$

$$T_{\rm eff,\star} = \left(\frac{L_\star}{4\pi R_\star^2 \sigma_b}\right)^{1/4}$$

Stellar wind physics

Wind physics modeled using empirical approach

For main sequence stars:

Mass loss rate (\dot{M}_{\star}): Nieuwenhuijzen et al. (1990) Wind speed ($v_{\star,w}$): Kudritzki & Puls (2000)

$$\log\left(\frac{\dot{M}_{\star}}{M_{\odot}\mathrm{yr}^{-1}}\right) = -14.02 + 1.24\log\left(\frac{L_{\star}}{L_{\odot}}\right) + 0.16\log\left(\frac{M_{\star}}{M_{\odot}}\right) + 0.81\left(\frac{R_{\star}}{R_{\odot}}\right)$$
$$L_{\star,w} = \frac{1}{2}\dot{M}_{\star} \left\{ C(T_{\mathrm{eff}})^{2} \left[\frac{2GM_{\star}(1 - L_{\star}/L_{\mathrm{Edd}})}{R_{\star}}\right] \right\} \mathcal{V}_{\star,w}^{2}$$

Stellar wind physics

Wind physics modeled using empirical approach

For main sequence stars:

Mass loss rate (\dot{M}_{\star}): Nieuwenhuijzen et al. (1990) Wind speed ($v_{\star,w}$): Kudritzki & Puls (2000)

$$\log\left(\frac{\dot{M}_{\star}}{M_{\odot}\mathrm{yr}^{-1}}\right) = -14.02 + 1.24\log\left(\frac{L_{\star}}{L_{\odot}}\right) + 0.16\log\left(\frac{M_{\star}}{M_{\odot}}\right) + 0.81\left(\frac{R_{\star}}{R_{\odot}}\right)$$
$$L_{\star,w} = \frac{1}{2}\dot{M}_{\star} \left\{ C(T_{\mathrm{eff}})^{2} \left[\frac{2GM_{\star}(1 - L_{\star}/L_{\mathrm{Edd}})}{R_{\star}}\right] \right\} \mathcal{V}_{\star,w}^{2}$$

For WR stars:

Mass loss rate (\dot{M}_{\star}): Nugis & Lamers (2000) Wind speed ($v_{\star,w}$): 2000 km/s Assumed solar metallicity

$$\log_{10} \left(-\frac{\dot{M}_{\text{WR, i}}}{M_{\odot} y r^{-1}} \right) = -11.0 + 1.29(14) \log_{10} \left(\frac{L_{\text{WR, i}}}{10^5 L_{\odot}} \right) + 1.73(42) \log_{10} \left(\frac{Y_{\text{WR, i}}}{Y_{\odot}} \right) + 0.47(09) \log_{10} \left(\frac{Z_{\text{WR, i}}}{Z_{\odot}} \right)$$

Cluster wind luminosity and mass loss rate calculating by summing all $L_{\star,W}$ and \dot{M}_{\star}

Modeling cluster population

YMSCs distribution function

YMSC distribution function:

 $\xi_{SC}(M_{SC}, t, r, \theta) = \frac{dN_{SC}}{dM_{SC}dtdrd\theta} = f(M_{SC})\psi(t)\rho(r, \theta)$

Generate YMSCs population (I)

Cluster IMF (Piskunov et al, 2018) $f(M_{SC}) \propto M_{SC}^{-1.54} [2.5 - 6.3 \times 10^4] M_{\odot}$

NB: the maximum cluster mass depends on the gas profile

 $M_{max,r}(r) = M_{max} \left[\frac{\Sigma_{gas}(r)}{\Sigma_{gas}(r=0)} \right]^{3/2}$ (Pflamm-Altenburg&Kroupa, 2008)

YMSC distribution function: $\xi_{SC}(M_{SC}, t, r, \theta) = \frac{dN_{SC}}{dM_{SC}dtdrd\theta} = f(M_{SC})\psi(t)\rho(r, \theta)$ **Cluster formation rate** $SFR_{sc} = 790 \text{ M}_{\odot} \text{ Myr}^{-1} \text{ kpc}^{-2}$ (Bonatto et al 2011) $\bar{\psi} = \frac{SFR_{sc}}{\int M_{cc} f(M_{cc}) dM_{sc}} = 1.8 \,\mathrm{Myr}^{-1} \mathrm{kpc}^{-2}$ ⁵⁰⁰ F Piskunov et al. (2018) Cluster age 400 distribution 300 N 200 ≈constant 100 10 g

 $\log(t, yr)$

Generate YMSCs population (II)

Cluster distribution in galaxy

Radial position traced by giant molecular clouds

Position in (x,y): random (r, θ) -> associate with structures [*see backup slides*] Position in (z): random (z) following gas distribution (Strong et al 2000)

YMSC distribution function:

 $\xi_{SC}(M_{SC}, t, r, \theta) = \frac{dN_{SC}}{dM_{SC}dtdrd\theta} = f(M_{SC})\psi(t)\rho(r, \theta)$

Parameters	Arm 1	Arm 2	Arm 3	Arm 4	Local Spur
R_i [kpc]	3.27	4.29	3.58	3.98	8.16
Ψ_i [°]	9.87	10.51	10.01	8.14	2.71
$ heta_i$ [°]	38.5	189	215.2	320.1	50.6

Results

Synthetic YMSCs spatial distribution

Single realization of the Galactic population

Total number of YMSCs: 747 (Age <10 Myr, M_{sc} >10³ M_{\odot})

Spatial distribution (100 realizations)

Wind blown bubbles

2000

YMSCs wind properties (I)

<u>Results shown are for a single galactic realization</u> **No significant difference from changing M**_{*,max} (Contribution of WRs here is not considered!)

YMSCs wind properties (II)

Effect of WRs and SNe

We now fix $M_{\star,max}$ =150 M_{\odot}

We consider 100 different realization of the galactic population

Ratio between energy injected by supernovae and winds NB: the history of wind is not considered! This is a lower limit!!!

Wind luminosity

What about the gamma-ray emission?

Contribution to diffuse y-ray emission

We consider 100 different realization of the galactic population

γ-ray emission depends on many parameters:

- \succ Efficiency in accelerating cosmic rays (10% of L_w)
- Density of target material (10 cm⁻³)
- Particles confinement within the bubble

Conclusions

- Importance of YMSCs as high energy sources has constantly growing in the last decades
- To estimate their contribution to γ-ray emission, simulation of synthetic population is required
 - We expect 750 YMSCs in the Milky Way
 - Maximum stellar mass does not affect wind power and mass loss rate of MS stars
 - Contribution of WRs is important
- Contribution to the diffuse emission likely not negligible!

Future prospects

- Evaluate contribution to neutrino flux
- Population study cross check with Milky-Way like galaxies

COMING SOON

Workshop on young massive star clusters from different prospective END SPRING/BEGINNING SUMMER 2024 – Florence/Siena

BACKUP SLIDES

Synthetic YMSCs spatial distribution

	R	θ	
		$\theta < 360^{\circ}$	
Spiral Arm 1	$R \geq 3.27 \ \rm kpc$	(or $50^\circ > \theta > 110^\circ$	
		if $7.59 \text{ kpc} < R < 9.17 \text{ kpc}$)	
		$\theta < 360^\circ$	
Spiral Arm 2	$R \geq 4.29 \ \rm kpc$	(or $50^\circ > \theta > 110^\circ$	
		if $7.59 \text{ kpc} < R < 9.17 \text{ kpc}$)	
		$\theta < 360^{\circ}$	
Spiral Arm 3	$R \geq 3.58 \ \rm kpc$	(or $50^\circ > \theta > 110^\circ$	
		if $7.59 \text{ kpc} < R < 9.17 \text{ kpc}$)	
		$\theta < 360^{\circ}$	
Spiral Arm 4	$R \geq 3.98 \ \rm kpc$	(or $50^\circ > \theta > 110^\circ$	
		if $7.59 \text{ kpc} < R < 9.17 \text{ kpc}$)	
Local Spur	$7.59\mathrm{kpc} < R < 9.17\mathrm{kpc}$	$50^{\circ} \le \theta \le 110^{\circ}$	
NF 3kpc / Bar	$R < 4.29 \ \mathrm{kpc}$	$\theta < 360^{\circ}$	

Effect of WRs and SNe (II)

We now fix $M_{\star,max}$ =150 M_{\odot}

We consider 100 different realization of the galactic population

Contribution of WR is not negligible!

Wind luminosity

Cluster population study

Left column: Wind luminosity (top) and Mass loss rate (bottom) if maximum stellar mass is 150 M_{\odot}

Right column: Wind luminosity (top) and Mass loss rate (bottom) if maximum stellar mass depends on the cluster mass

WRs vs tage

Density environment close to YMSC

Effect of WRs and SNe

We now fix $M_{\star,max}$ =150 M_{\odot}

We consider 100 different realization of the galactic population

CR accelerated by YMSC

Morlino et al. (2022): CRs accelerated at the wind TS

(1)
$$f_1(r,p) \simeq f_{TS}(p) \cdot exp\left[-\int_r^{R_{TS}} \frac{u_1}{D_1(r',p)} dr'\right]$$

(2) $f_2(r,p) = f_{TS}(p)e^{\alpha} \frac{1 + \beta(e^{\alpha_B - \alpha} - 1)}{1 + \beta(e^{\alpha_B} - 1)} + f_{gal}(p) \frac{\beta(e^{\alpha} - 1)}{1 + \beta(e^{\alpha_B} - 1)}$
(3) $f_{ism}(r,p) = f_2(R_b,p) \frac{R_b}{r} + f_{gal}(p) \left(1 - \frac{R_{TS}}{r}\right)$

$$f_{TS}(p) \simeq \frac{3n_1 u_1^2 \epsilon_{CR}}{4\pi \Lambda_p (m_p c)^3 c^2} \left(\frac{p}{m_p c}\right)^{-s} \left[1 + a_1 \left(\frac{p}{p_{max}}\right)^{a_2}\right] e^{-a_3 (p/p_{max})^{a_4}}$$

 $\alpha_B = \alpha(r = R_b, p)$

 $\beta = \beta(p) = \frac{D_{ism}(p)R_b}{u_2 R_{TS}^2}$

Models	a_1	a_2	a_3	a_4
Kolmogorov	10	0.308653	22.0241	0.43112
Kraichnan	5	0.448549	12.52	0.642666
Bohm	8.94	1.29597	5.31019	1.13245

