EXTINCTION AND THE GALACTIC MD-PLANE

Tristan Cantat-Gaudin

From Star Clusters to Field Populations, Firenze – 2023/11/20

Max-Planck-Institut für Astronomie, Heidelberg

The Milky Way is a spiral galaxy

NGC 4414

Since we live inside it, we actually know a lot less about its structure than we know about other, distant galaxies.

NGC 5457

NASA, ESA, Hubble, SDSS

Hundreds of Gaiadiscovered clusters

and automated methods to estimate ages for large batches of objects. e.g. Cantat-Gaudin et al. (2020); Cavallo et al. (2023); Hunt & Reffert (2023)

Y [pc]

[Castro-Ginard et al. 2020]

clusters younger than 60 Myr (green) and 60 to 100 Myr (cyan)

Hundreds of Gaiadiscovered clusters

Castro-Ginard et al. (2022)

Table 1. List of all the catalogues cross-matched in this article to generate the UCC database. Columns ID and N are the denomination used for new candidate OCs, and the total number of OCs taken from each work, respectively.

[Perren et al. 2023	Reference	ID	Ν
	Kharchenko et al. (2012)	_	2854
	Loktin & Popova (2017)	LP	1050
	Castro-Ginard et al. (2018)	UBC	23
	Bica et al. (2019)	Bica	3555
	Castro-Ginard et al. (2019)	UBC	53
	Sim et al. (2019)	UPK	207
	Liu & Pang (2019)	FoF	76
	Ferreira et al. (2019)	UFMG	3
	Castro-Ginard et al. (2020)	UBC	570
	Ferreira et al. (2020)	UFMG	25
	Cantat-Gaudin et al. (2020)	-	2017
	Hao et al. (2020)	HXWHB	16
	Ferreira et al. (2021)	UFMG	34
	He et al. (2021)	HXHWL	74
	Dias et al. (2021)	-	1742
	Hunt & Reffert (2021)	PHOC	41
	Casado (2021)	Casado	20
	Jaehnig et al. (2021)	XDOCC	11
	Santos-Silva et al. (2021)	CMa	5
	Tarricq et al. (2022)	-	467
	Castro-Ginard et al. (2022)	UBC	628
	He et al. (2022a)	CWNU	541
	He et al. (2022b)	CWNU	836
	Hao et al. (2022)	OC	703
	Li et al. (2022)	LISC	61
	He et al. (2023b)	CWNU	1656
	Hunt & Reffert (2023)	HSC	6272
	Qin et al. (2023)	OCSN	101
	Li & Mao (2023)	LISC	35
	Chi et al. (2023b)	CWWL	46
	Chi et al. (2023a)	LISC-III	82
	Chi et al. (2023c)	CWWDL	1179
	Number of OCs in all the catalogues		24983
	Number of unique OCs after cross-matching		13684

The Milky Way doesn't seem to be a classical grand-design spiral galaxy

The arms all have independent pattern speeds, which are close to the rotational velocity of circular orbits.

They are probably transient features, not stable density waves

The radial and vertical structure of the Milky Way (traced by clusters)

The radial and vertical structure of the Milky Way

few old clusters in the inner disc

older clusters can be found further from the Galactic mid-plane

visible flaring: increase of scale height with Galactocentric distance

Our view of the inner disc is limited by extinction

The view of the outer disc is much less affected.

Our view of the inner disc is limited by extinction

3D extinction map from Lallement et al. (2022)

Our view of the inner disc is limited by extinction

18

- 16

- 14

12

- 10

8

6

2000

0

X (pc)

4000

6000

3D extinction map from Lallement et al. (2022)

Six of the innermost clusters...

extinction makes the CMDs of inner-disc clusters blurry

red clump apparent magnitude G~14-15 (the cluster/field contrast is poor in the inner disc)

the fainter members have G~18-19

[Gaia collaboration, Antoja et al. 2021]

...vs two outermost clusters

Optical CMDs are easily blurred by extinction

Near-infrared astrometry to probe the inner disc

2028:

JASMINE: Near-Infrared Astrometry and Time Series Photometry Science

Daisuke Kawata^{1,2,*}, Hajime Kawahara³, Naoteru Gouda^{1,4}, Nathan J.

Fig. 2. The planned survey area of the *JASMINE* GCS program (high-lighted with a yellow open square) overlaid on an the image of the SIRIUS survey (Nishiyama et al. 2006).

A near-infrared version of Gaia would probe the inner disc and the faint end of the mass function (K,M, brown dwarfs...)

Combining Gaia and GaiaNIR would improve proper motions by a factor of 20.

Mission still in project: if you want to help look up

"Register your interest in GaiaNIR"

If inner regions contain 100 times more stars in GaiaNIR than in Gaia, we are going to need **very precise proper motions** to pick up the signal of a compact cluster

Modelling the Milky Way with incomplete samples

-58.5

-59.0

-59.5

<u>ਛ</u> –60.0

-60.5

-61.0

-61.5

All astronomical catalogues have completeness limits. For Gaia the limit is around G~21 but this varies with position on the sky due to the scanning law, and to crowding effects.

Any subset of Gaia data (e.g. good parallaxes, astrophysical parameters) has its own selection function.

The GaiaUnlimited Python package helps you construct selection functions

gala

unlimited

Modelling the Milky Way with incomplete samples

Cantat-Gaudin et al. (submitted)

Selection function for Gaia red clump stars and 3D modelling of the density distribution of mono-abundance populations.

Future work: a catalogue of Gaia clusters with a well-defined selection function

Clusters are easier to detect:

- against a sparse background
- if they have more stars
- if they have bright stars
- if their motions are different from the surrounding stars

Making meaningful quantitative comparisons between models and observed catalogues requires a selection function, which describes the completeness of the sample as a function of **position, distance, age, orbital parameters**, etc.

Massive Young Clusters

30°

- tens or hundreds of thousands of solar masses
- ages of few Myr
- found in the Magellanic Clouds or in the inner Milky Way
- embedded in dust

Distribution of young massive clusters in the Milky Way

(from I. Negueruela)

Massive Young Clusters

- tens or hundreds of thousands of solar masses
- ages of few Myr
- found in the Magellanic Clouds or in the inner Milky Way
- embedded in dust

Distribution of young massive clusters in the Milky Way

They only seem to exist in very dense environments.

They seem to form via hierarchical merging of smaller clumps.

Simulations (e.g. Dobbs et al. 2022) can recreate some of those observational properties, with massive clusters forming in dense environments via merging, and sparser associations forming in less dense regions.

We need GaiaNIR to see further, deeper, and to study a larger chunk of the Milky Way with homogeneous methods!

Summary

- We see fragments of spiral arms, but not over very large distances.
- We are probably not extinction-limited in the outer disc, but Gaia definitely hits an extinction wall in the inner disc.
- Studying the difference between inner- and outer-disc clusters (formation processes, survival rates) requires near-infrared photometry and astrometry.
- We can do a lot of science with incomplete samples, as long as we know the selection function: for cluster it is still a very tricky question!