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Context

The disruption of a star cluster or satellite inside the parent

galaxy involves, tidal e�ects, phase-mixing (collisionless) and

dynamical friction (collisional)

Di�erent theories of gravity have degeneracy with respect to

kinematics but, in principle, di�erent dynamics.

How di�erently does the dynamical friction on a cluster sinking

into a galactic potential in MOND di�ers from its Newtonian

counterpart?
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MOND, basics

Modi�ed Newtonian Dynamics (MOND, Milgrom 1983) has

been proposed as an alternative to the dark matter problem.

In the Lagrangian formulation (Bekenstein & Milgrom 1984) it

amounts to the modi�cation of the Poisson equation

∇ ·
[
µ

(
||∇Φ||
a0

)
∇Φ

]
= 4πGρ∗.

a0 ≈ 10−8cm s−2 is a scale acceleration and µ(x) is the
MOND interpolating (monotonic) function known only by its

asymptotic limits

µ(x) ∼

{
1, x ≫ 1, Newtonianregime

x , x ≪ 1, deep−MONDregime.

usually it assumed µ(x) = x/
√
x2 + 1
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MOND, equivalent Newtonian system

Any baryonic mass density ρ∗ can be taken out from Poisson and

non-linear Poisson (AquaL) equations obtaining the relation

µ

(
||gM ||
a0

)
gM = gN + S

where S ≡ ∇× h(ρ) is a density-dependent solenoidal �eld that is

null in spherical systems. In those cases the equivalent Newtonian

system has an e�ective halo given by an isolated spherical system

one has

ρDM = (4πG )−1∇ · (gM − gN).
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Quasi-Linear formulation of MOND (QuMOND)

Milgrom (2010) introduced a quasi-linear formulation of MOND

where

∆Φ = ∇ · [ν(||∇ΦN ||/a0∇ΦN)]

where ΦN is the Newtonian potential generated by ρ∗,
ν(y) = 1/µ(x) and xµ(x) = y .

The MOND potential Φ enters the linear Poisson equation for the

density

ρ̃ = − 1

4πG
∇ · [ν(gN/a0)gN ] ,

that allows to recover the �phantom" DM density as ρDM = ρ̃− ρ∗
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Collisionless relaxation in MOND

Numerical evidences that in MOND and Newtonian gravity (Nipoti

et al. 2007a,b,c,2011) collective relaxation process work di�erently
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Collisionless relaxation in MOND

Violent relaxation and phase-mixing are less e�ective in MOND.

Non-linearity or long-range behaviour?
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Dynamical friction, classical

The classical Chandrasekhar (1943) dynamical friction coe�cient

for a test mass mT is given by

η(v) = 4πG 2ρ∗(mT +m∗) ln Λ
Ψ(v)

v3
,

with velocity volume function given as:

Ψ(v) = 4π

∫ v

0

f (v ′)v ′2dv ′,

for a 2-component model (stars + DM) is proportional to

(MT+ < m >)(ρ∗ + ρDM)
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Dynamical friction, MOND

A naive dMOND estimation of t2b gives (Ciotti & Binney 2004):

t2b
tcross

=
v4typr

2

0
N

2G 2M2

implying a dynamical friction coe�cient of the order of 1/tcross . A
more re�ned treatment yields instead

tN
2b

tN
2b

=

√
2

(1+ R)2

from which it descends that

ηM = (1+ R)ηN/
√
2

where R = MDM/M∗ is the ratio of the dark matter in the

equivalent Newtonian system and the baryonic mass.

MOND dynamical friction is stronger than its (baryon only)

counterpart.
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Dynamical friction, QuMOND

In QuMOND, for ν(y) = 1+ 1/
√
y a point source produces a

gravitational acceleration gQ ≈ Gm/r2 + Gm/rr0, where
r0 =

√
G (m +M)/a0 is the usual MOND radius.

Following the standard Chandrasekhar derivation the

QuMOND DF coe�cient becomes (Di Cintio & Re 2023)

η(v) = 4πG 2ρ∗(mT +m∗)
(
ln Λ +

2bmax
r0

+
b2max
r2
0

)Ψ(v)

v3
,

All stars are in the dMOND regime as r0 ≪ R , however when

a0 ≲ |∇ΦT | even weak interactions are in Newtonian regime

(external �eld e�ect)
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Model

The satellite star cluster sinking into the parent galaxy is modeled

with:

Unperturbed time independent galactic potential (spherical

γmodel) in Newton or MOND

ρi (r) =
3− γ

4π

Mi rc,i

rγ(r + rc,i )4−γ

Self consistent potential for star cluster

Analytical dynamical friction on satellite particles + noise
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Single particle dynamics

The motion particles belonging to the cluster with self-consistent

Φc under the e�ect of galactic potential Φgal and its discreteness

e�ects is then

d2r

dt2
= −∇Φtot(r)− η

d r

dt
+ FW

where η is either due to baryons only (in MOND) or to baryons and

DM (in Newton) and the �uctuating force FW is a �uctuating force

per unit mass.

for MT ∼ m: η;F ̸= 0

for m ≫ MT η = 0 and F ̸= 0

for MT ≫ m: η ̸= 0 and F = 0
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Numerical methods

We assume two di�erent distributions of local random kicks. 3D

Gaussian and Holtsmark (1911) distribution (Chandrasekhar & von

Neumann 1942,1943):

H(F ) =
2

πF

∫ ∞

0

exp
[
−α(ξ/F )3/2

]
ξ sin(ξ)dξ; α =

4

15
(2πGm∗)

3/2n∗

100

101

102

103

10-4 10-3 10-2 10-1

r/rc=0

r/rc=2
H
(F
)

F

Fat tailed distribution. For large forces (small mean inter-particle

distance) H̃(F ) ∼ 2πn∗(Gm∗)
3/2F−5/2
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Numerical methods

Stochastic ODEs, like Langevin equations, are not an easy

computational task. We adopt the robust quasi-symplectic

Mannella (2004) scheme:

x(t +∆t/2) = x(t) +
∆t

2
v(t)

v(t +∆t) = c2

[
c1v(t) + ∆t∇Φ(x ′) + d1F̃ (x

′)
]

x(t +∆t) = x(t +∆t/2) +
∆t

2
v(t +∆t).

where:

c1 = 1− η∆t

2
; c2 =

1

1+ η∆t/2
; d1 =

√
2ζη∆t.

For η; ζ = 0 becomes the standard second order leapfrog.
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Tests: N-Body vs semi-analytical
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations: MOND vs QuMOND
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Numerical simulations: MOND vs QuMOND
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Numerical simulations: MOND vs QuMOND
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Numerical simulations: MOND vs QuMOND
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Conclusion

Hybrid Langevin-Nbody scheme are in certain regimes a valid

alternative to pure (collisionless) N−body
A stronger MOND dynamical friction partially restores the lack

of DM

Di�erent MOND theories might behave di�erently with

respect to collisional processes
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