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Figure 3. The evolution of the convective zone of a 1.18M�,
solar-metallicity star as a function of time t. The black solid line,
plotted on the left-hand ordinate axis, shows the mass contained
within the surface convective zone, mcz, in solar masses. The blue
diamond is the turn-o↵ model that fits M67 Y2235. The thin
dotted horizontal blue line shows the value of mCZ at 4Gyr; as
can be seen, other than for the brief interval whilst the star is still
settling onto the zero-age main-sequence, the star’s convective
zone is less massive than this at all previous times. The dashed
red line, plotted against the right-hand ordinate axis, shows the
depth of the convective zone, dcz, in solar radii.

tive envelope for this star from the zero-age main sequence
to 5Gyr. The star’s mass is just below the point at which
the stellar envelope transitions from convective to radiative,
which in main-sequence stars of solar metallicity takes place
at about 1.3M�. Hence it has a low-mass surface convec-
tive zone. During the first 3Gyr of main-sequence evolution
the mass in the star’s surface convective zone shrinks as the
mean molecular weight of the material in the central re-
gions increases following nuclear burning. Towards the end
of the main sequence, as the star begins to form a distinct
hydrogen-exhausted core, the convective zone starts to grow
again. After 4 Gyr it deepens quickly as the star begins the
transition towards the subgiant branch. The thin blue dot-
ted horizontal line shows that, with the exception of the
first 108 yr, the star’s convective zone has never previously
exceeded its mass at 4Gyr, which is 3.45⇥ 10�3 M�.

The change in logarithmic number abundance of species
x, �[x/H], is, in general, given in terms of its mass fraction
X(x), as
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where X0 denotes the original abundance. In practice the
change in hydrogen abundance can be neglected. If we as-
sume that the change is caused by the accretion of mac of
material with total metal mass fraction Zac = 1, with all the
individualmetals in the same ratios as the original material,1

1 see Section 5 for a discussion of this assumption

then this becomes
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where mcz is once again the mass in the convective zone
and Z is the mass fraction of metals following accretion.
We take Z0 = 0.013 (Asplund et al. 2009) which, for our
1.18M� model shown in Figure 3 implies that we need to
accrete a total of 1.6⇥ 10�5 M� of metals, about 5.2M�.

The discussion above shows that a thin convective zone
permits the observed surface abundance to be changed sig-
nificantly by the engulfment of a terrestrial planet. As seen
in Fig 3, the convective zone encompasses a far larger frac-
tion of the stellar radius that it does mass: it never accounts
for less than 20% of the stellar radius. However it is not obvi-
ous that the planet will be entirely disrupted before it sinks
below the base of the convective zone. To quantify whether
the planets are disrupted in or below the convective zone,
we have developed a simple model of the destruction of a
planet as it sinks into the star.

3 DISRUPTION OF INGESTED PLANETS

Our model of the ingestion of planets contains a number of
simplifying assumptions which are discussed in Section 3.3.
We are not attempting to make a complete model of the
passage of a planet into the stellar atmosphere but to answer
a simple question – does the planet dissolve before reaching
the base of the convective zone? – for which we think that
this calculation is su�cient.

3.1 Model ingredients

We begin our calculations at the point where the planet
enters the surface of the star for the first time. Inside the
star a spherical planet of radius Rp, moving with velocity v

relative to the star, is subject to a drag force of magnitude

FD =
1
2
CD⇡R

2
p⇢?(r)v

2 (3)

where we set the drag coe�cient CD = 1 and obtain the
density of the stellar surface layers ⇢? by linear interpolation
in radius r. We neglect the force owing to dynamical friction,
FDF, since, following Binney & Tremaine (2008),
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where the Coulomb logarithm, ln⇤ ' 10, and the surface
escape velocity of the planet, vesc,p ⇡ 10� 20 km s�1, whilst
v ⇡ 500 km s�1 for a compact turn-o↵ or main-sequence star.
We divide FD by the mass of the planet, which we conserva-
tively assume to have the density of iron, ⇢p ' 7.9 g cm�3,
to obtain the total acceleration of the planet, r̈, as

r̈ = �Gm?(r)r
r

3
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The power dissipated by the drag force is equal to FDv.
Most of the liberated energy goes into heating up the stellar
photosphere, but a fraction is deposited in the planet. This
energy first melts the planet and then gravitationally un-
binds it; in practice the latter process requires most energy.
We represent the fraction of the energy dissipated that goes
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