# Near pristine DLAs: A window to the first stars

Enigmatic first stars and where to find them!

Louise Welsh

17th May 2023



Image credit: ESO







# **Detecting the first elements**

• The chemical fingerprints of the first stars are believed to be encoded in the *most* **metal-poor** environments in the Universe.



Image credit: X-ray: NASA/CXC/MIT/L.Lopez et al.; Infrared: Palomar; Radio: NSF/NRAO/VLA Image credit: Naomi McClure-Griffiths et al., CSIRO's ASKAP telescope

Image credit: ESA/NASA

# Damped Lyman Alpha systems (DLAs) 🛔 🦳 💮 🛉

• Clouds of mostly neutral gas found along the line-of-sight towards unrelated background quasar. Characterised by  $\log_{10} N(HI) / cm^{-2} > 20.3$ 



#### Metallicity at different column densities

![](_page_3_Figure_1.jpeg)

# [O/Fe] in the most metal-poor systems

![](_page_4_Figure_1.jpeg)

# [O/Fe] in the most metal-poor systems

![](_page_5_Figure_1.jpeg)

# J1001+0343

- Further observations with high resolution echelle spectrograph VLT/UVES (R~40,000) of prime target at  $z \sim 3$ .
- Full complement of data confirm [Fe/H] =  $-3.25 \pm 0.07$  and [O/Fe] =  $+0.62 \pm 0.05$
- Determination of [O/Fe] improved by a factor of 3.

![](_page_6_Figure_4.jpeg)

#### [O/Fe] in the most metal-poor systems

![](_page_7_Figure_1.jpeg)

#### [O/Fe] in the most metal-poor systems

![](_page_8_Figure_1.jpeg)

#### The most metal-poor DLA currently known

Ion

ΗI

CII

OI

SiII

![](_page_9_Figure_1.jpeg)

#### [O/Fe] in the most metal-poor systems

![](_page_10_Figure_1.jpeg)

#### The same pattern is seen in stars

![](_page_11_Figure_1.jpeg)

# **Comparison with nucleosynthetic models**

![](_page_12_Figure_1.jpeg)

low explosion energy  $\rightarrow$  high explosion energy

I use those from Woosley & Weaver (1995) Heger & Woosley (2010)

![](_page_13_Picture_1.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_18_Figure_1.jpeg)

# Probability of [X/Y] given an enrichment model

![](_page_19_Figure_1.jpeg)

#### **Stochastic enrichment of an EMP DLA**

![](_page_20_Figure_1.jpeg)

# **Inferred physical properties**

![](_page_21_Figure_1.jpeg)

Comparable to stellar content of the faint Milky Way satellite population (Martin et al. 2008; McConnachie 2012). These typically span a mass range of  $M \sim (10^2 - 10^5) M_{\odot}$ , and are still expected to contain gas at redshift  $z \sim 3$  (Wheeler et al. 2018).

# **Comparison with stars in UFDs**

Stellar data from SAGA database (Susa et al. 2014)

![](_page_22_Figure_2.jpeg)

#### A similar star Boo-1137 in Bootes I

![](_page_23_Figure_1.jpeg)

[Mg/C], [Fe/H], and A(C) abundances of Boo–1137 are indicative of enrichment via Pop III SNe (Rossi et al. 2023)

# **Carbon Isotope Ratio**

- Simulations of stellar evolution suggest most stars predominantly produce <sup>12</sup>C,
- There are two channels to produce low <sup>12</sup>C/<sup>13</sup>C ratios in non-rotating stars:
  - $\rightarrow$  Low-mass Population III stars
  - $\rightarrow$  Intermediate-mass Population II stars
- In the future we would also like to consider yields of rapidly rotating stars (e.g. Ekström et al. 2008, Meynet et al. 2010, Limongi & Chieffi 2018)

![](_page_24_Figure_6.jpeg)

#### **Yields**

![](_page_25_Figure_1.jpeg)

# С п λ1334

The presence of <sup>13</sup>C is seen as an asymmetry in C II  $\lambda$ 1334 line

![](_page_26_Figure_2.jpeg)

#### 1. ESPRESSO (The Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations)

![](_page_27_Picture_1.jpeg)

Image Credit: Miguel Claro / ESO

# 2. A Quiescent DLA

![](_page_28_Figure_1.jpeg)

Welsh et al. 2020

#### **Enrichment timescale**

1 Gyr.

![](_page_29_Figure_1.jpeg)

# Conclusions

- Near-pristine DLAs and are an ideal tracer of chemical evolution,
- Empirical trends such as [O/Fe] vs [Fe/H] may reveal Population III enrichment,
- We can use stochastic enrichment model to draw out evolutionary relationships
- We can also search for signatures of low mass Population III stars using the carbon isotope and ESPRESSO
- The surveys and instruments in development over the next decade are ideally suited to push on this science.

![](_page_30_Figure_6.jpeg)

![](_page_30_Figure_7.jpeg)